中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes

文献类型:期刊论文

作者Luo, Shuangxiao; Song, Chunqiao; Liu, Kai; Ke, Linghong; Ma, Ronghua
刊名SENSORS
出版日期2019
卷号19期号:19
源URL[http://159.226.73.51/handle/332005/19134]  
专题中国科学院南京地理与湖泊研究所
作者单位中科院南京地理与湖泊研究所
推荐引用方式
GB/T 7714
Luo, Shuangxiao,Song, Chunqiao,Liu, Kai,et al. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes[J]. SENSORS,2019,19(19).
APA Luo, Shuangxiao,Song, Chunqiao,Liu, Kai,Ke, Linghong,&Ma, Ronghua.(2019).An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes.SENSORS,19(19).
MLA Luo, Shuangxiao,et al."An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes".SENSORS 19.19(2019).

入库方式: OAI收割

来源:南京地理与湖泊研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。