An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes
文献类型:期刊论文
作者 | Luo, Shuangxiao; Song, Chunqiao; Liu, Kai; Ke, Linghong; Ma, Ronghua |
刊名 | SENSORS
![]() |
出版日期 | 2019 |
卷号 | 19期号:19 |
源URL | [http://159.226.73.51/handle/332005/19134] ![]() |
专题 | 中国科学院南京地理与湖泊研究所 |
作者单位 | 中科院南京地理与湖泊研究所 |
推荐引用方式 GB/T 7714 | Luo, Shuangxiao,Song, Chunqiao,Liu, Kai,et al. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes[J]. SENSORS,2019,19(19). |
APA | Luo, Shuangxiao,Song, Chunqiao,Liu, Kai,Ke, Linghong,&Ma, Ronghua.(2019).An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes.SENSORS,19(19). |
MLA | Luo, Shuangxiao,et al."An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes".SENSORS 19.19(2019). |
入库方式: OAI收割
来源:南京地理与湖泊研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。