Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae
文献类型:期刊论文
作者 | Li, Xi1; Feng, Tao3; Randle, Chris2; Schneeweiss, Gerald M.1 |
刊名 | FRONTIERS IN PLANT SCIENCE
![]() |
出版日期 | 2019-07-16 |
卷号 | 10页码:14 |
关键词 | low-copy nuclear genes Orobanchaceae parasitic plants phylogeny PPR genes |
ISSN号 | 1664-462X |
DOI | 10.3389/fpls.2019.00902 |
英文摘要 | Molecular phylogenetic analyses have greatly advanced our understanding of phylogenetic relationships in Orobanchaceae, a model system to study parasitism in angiosperms. As members of this group may lack some genes widely used for phylogenetic analysis and exhibit varying degrees of accelerated base substitution in other genes, relationships among major clades identified previously remain contentious. To improve inferences of phylogenetic relationships in Orobanchaceae, we used two pentatricopeptide repeat (PPR) and three low-copy nuclear (LCN) genes, two of which have been developed for this study. Resolving power and level of support strongly differed among markers. Despite considerable incongruence among newly and previously sequenced markers, monophyly of major clades identified in previous studies was confirmed and, especially in analyses of concatenated data, strongly supported after the exclusion of a small group of East Asian genera (Pterygiella and Phtheirospermum) from the Euphrasia-Rhinanthus clade. The position of the Orobanche clade sister to all other parasitic Orobanchaceae may indicate that the shift to holoparasitism occurred early in the evolution of the family. Although well supported in analyses of concatenated data comprising ten loci (five newly and five previously sequenced), relationships among major clades, most prominently the Striga-Alectra clade, the Euphrasia-Rhinanthus clade, and the Castilleja-Pedicularis clade, were uncertain because of strongly supported incongruence also among well-resolving loci. Despite the limitations of using a few selected loci, congruence among markers with respect to circumscription of major clades of Orobanchaceae renders those frameworks for detailed, species-level, phylogenetic studies. |
资助项目 | China Scholarship Council[201206100007] |
WOS研究方向 | Plant Sciences |
语种 | 英语 |
WOS记录号 | WOS:000475858700001 |
出版者 | FRONTIERS MEDIA SA |
源URL | [http://202.127.146.157/handle/2RYDP1HH/7796] ![]() |
专题 | 中国科学院武汉植物园 |
通讯作者 | Schneeweiss, Gerald M. |
作者单位 | 1.Univ Vienna, Dept Bot & Biodiversrty Res, Vienna, Austria 2.Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77340 USA 3.Chinese Acad Sci, Wuhan Bot Garden, Wuhan, Hubei, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xi,Feng, Tao,Randle, Chris,et al. Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae[J]. FRONTIERS IN PLANT SCIENCE,2019,10:14. |
APA | Li, Xi,Feng, Tao,Randle, Chris,&Schneeweiss, Gerald M..(2019).Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae.FRONTIERS IN PLANT SCIENCE,10,14. |
MLA | Li, Xi,et al."Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae".FRONTIERS IN PLANT SCIENCE 10(2019):14. |
入库方式: OAI收割
来源:武汉植物园
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。