中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Structured sparse K-means clustering via Laplacian smoothing

文献类型:期刊论文

作者Gong, Weikang1,3; Grunewald, Stefan1; Zhao, Renbo2; ,
刊名PATTERN RECOGNITION LETTERS
出版日期2018
卷号112期号:-页码:63-69
关键词Structured sparse clustering K-means clustering Feature selection Graph Laplacian smoothing
ISSN号0167-8655
DOI10.1016/j.patrec.2018.06.006
文献子类Article
英文摘要We propose a structured sparse K-means clustering algorithm that learns the cluster assignments and feature weights simultaneously. Compared to previous approaches, including K-means in MacQueen [28] and sparse K-means in Witten and Tibshirani [46], our method exploits the correlation information among features via the Laplacian smoothing technique, so as to achieve superior clustering accuracy. At the same time, the relevant features learned by our method are more structured, hence have better interpretability. The practical benefits of our method are demonstrated through extensive experiments on gene expression data and face images. (C) 2018 Elsevier B.V. All rights reserved.
学科主题Computer Science
WOS关键词VARIABLE SELECTION ; DATA SETS ; PREDICTION ; NUMBER ; VALIDATION ; DISCOVERY ; FRAMEWORK
语种英语
WOS记录号WOS:000443950800009
出版者ELSEVIER SCIENCE BV
版本出版稿
源URL[http://202.127.25.144/handle/331004/506]  
专题中国科学院上海生命科学研究院营养科学研究所
作者单位1.Chinese Acad Sci, Key Lab Computat Biol, CAS MPG Partner Inst Computat Biol, Shanghai Inst Biol Sci, Shanghai, Peoples R China;
2.Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore, Singapore,
3.Univ Chinese Acad Sci, Beijing, Peoples R China;
推荐引用方式
GB/T 7714
Gong, Weikang,Grunewald, Stefan,Zhao, Renbo,et al. Structured sparse K-means clustering via Laplacian smoothing[J]. PATTERN RECOGNITION LETTERS,2018,112(-):63-69.
APA Gong, Weikang,Grunewald, Stefan,Zhao, Renbo,&,.(2018).Structured sparse K-means clustering via Laplacian smoothing.PATTERN RECOGNITION LETTERS,112(-),63-69.
MLA Gong, Weikang,et al."Structured sparse K-means clustering via Laplacian smoothing".PATTERN RECOGNITION LETTERS 112.-(2018):63-69.

入库方式: OAI收割

来源:上海营养与健康研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。