中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Tensorial blind source separation for improved analysis of multi-omic data

文献类型:期刊论文

作者Teschendorff, Andrew E.1,2,3; Jing, Han1; Jing, Han4; Paul, Dirk S.5; Virta, Joni6; Nordhausen, Klaus7; ,
刊名GENOME BIOLOGY
出版日期2018
卷号19期号:-页码:76
关键词Multi-omic Tensor Dimensional reduction Independent component analysis mQTL Epigenome-wide association study Cancer
ISSN号1474-760X
DOI10.1186/s13059-018-1455-8
文献子类Article
英文摘要There is an increased need for integrative analyses of multi-omic data. We present and benchmark a novel tensorial independent component analysis (tICA) algorithm against current state-of-the-art methods. We find that tICA outperforms competing methods in identifying biological sources of data variation at a reduced computational cost. On epigenetic data, tICA can identify methylation quantitative trait loci at high sensitivity. In the cancer context, tICA identifies gene modules whose expression variation across tumours is driven by copy-number or DNA methylation changes, but whose deregulation relative to normal tissue is independent of such alterations, a result we validate by direct analysis of individual data types.
学科主题Biotechnology & Applied Microbiology ; Genetics & Heredity
WOS关键词INDEPENDENT COMPONENT ANALYSIS ; DNA METHYLATION CHANGES ; GENOMIC DATA ; CANCER ; DECOMPOSITION ; CELLS ; MICROARRAY ; SIGNATURES ; LANDSCAPE ; DISCOVERY
语种英语
WOS记录号WOS:000434947000001
出版者BIOMED CENTRAL LTD
版本出版稿
源URL[http://202.127.25.144/handle/331004/1027]  
专题中国科学院上海生命科学研究院营养科学研究所
作者单位1.Chinese Acad Sci, Shanghai Inst Biol Sci, CAS MPG Partner Inst Computat Biol, CAS Key Lab Computat Biol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China;
2.UCL, UCL Elizabeth Garrett Anderson Inst Womens Hlth, Dept Womens Canc, 74 Huntley St, London WC1E 6BT, England;
3.UCL, UCL Canc Inst, 74 Huntley St, London WC1E 6BT, England;
4.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China;
5.Univ Cambridge, Dept Publ Hlth & Primary Care, Strangeways Res Lab, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England;
6.Univ Turku, Turku 20014, Finland;
7.Vienna Univ Technol, Wiedner Hauptstr 7, A-1040 Vienna, Austria,
推荐引用方式
GB/T 7714
Teschendorff, Andrew E.,Jing, Han,Jing, Han,et al. Tensorial blind source separation for improved analysis of multi-omic data[J]. GENOME BIOLOGY,2018,19(-):76.
APA Teschendorff, Andrew E..,Jing, Han.,Jing, Han.,Paul, Dirk S..,Virta, Joni.,...&,.(2018).Tensorial blind source separation for improved analysis of multi-omic data.GENOME BIOLOGY,19(-),76.
MLA Teschendorff, Andrew E.,et al."Tensorial blind source separation for improved analysis of multi-omic data".GENOME BIOLOGY 19.-(2018):76.

入库方式: OAI收割

来源:上海营养与健康研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。