中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method

文献类型:期刊论文

作者Yuan, Fei1; Lu, Lin2; Zhang, YuHang3; Wang, ShaoPeng4; Cai, Yu-Dong4; ,
刊名MATHEMATICAL BIOSCIENCES
出版日期2018
卷号304期号:-页码:1-8
关键词LncRNA Cancer-related lncRNA GO term KEGG pathway Max-relevance Min-redundancy
ISSN号0025-5564
DOI10.1016/j.mbs.2018.08.001
文献子类Article
英文摘要LncRNAs plays an important role in the regulation of gene expression. Identification of cancer-related lncRNAs GO terms and KEGG pathways is great helpful for revealing cancer-related functional biological processes. Therefore, in this study, we proposed a computational method to identify novel cancer-related IncRNAs GO terms and KEGG pathways. By using existing lncRNA database and Max-relevance MM-redundancy (mRMR) method, GO terms and KEGG pathways were evaluated based on their importance on distinguishing cancerrelated and non-cancer-related lncRNAs. Finally, GO terms and KEGG pathways with high importance were presented and analyzed. Our literature reviewing showed that the top 10 ranked GO terms and pathways were really related to interpretable tumorigenesis according to recent publications.
学科主题Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology
WOS关键词LONG NONCODING RNA ; CELL-CYCLE PROGRESSION ; MESENCHYMAL STEM-CELLS ; FEATURE-SELECTION ; OSTEOGENIC DIFFERENTIATION ; MOLECULAR FRAGMENTS ; MUTUAL INFORMATION ; COLORECTAL-CANCER ; ANALYSIS REVEALS ; DOWN-REGULATION
语种英语
WOS记录号WOS:000444929000001
出版者ELSEVIER SCIENCE INC
版本出版稿
源URL[http://202.127.25.144/handle/331004/1034]  
专题中国科学院上海生命科学研究院营养科学研究所
作者单位1.Binzhou Med Univ Hosp, Dept Sci & Technol, Binzhou 256603, Shandong, Peoples R China;
2.Columbia Univ, Med Ctr, Dept Radiol, New York, NY 10032 USA;
3.Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Hlth Sci, Shanghai 200031, Peoples R China;
4.Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China,
推荐引用方式
GB/T 7714
Yuan, Fei,Lu, Lin,Zhang, YuHang,et al. Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method[J]. MATHEMATICAL BIOSCIENCES,2018,304(-):1-8.
APA Yuan, Fei,Lu, Lin,Zhang, YuHang,Wang, ShaoPeng,Cai, Yu-Dong,&,.(2018).Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method.MATHEMATICAL BIOSCIENCES,304(-),1-8.
MLA Yuan, Fei,et al."Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method".MATHEMATICAL BIOSCIENCES 304.-(2018):1-8.

入库方式: OAI收割

来源:上海营养与健康研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。