中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Image Noise Level Classification Technique Based on Image Quality Assessment

文献类型:会议论文

作者Luo, Geng1; Zhao ZC(赵梓成)2; Long Q(龙潜)2; Lv, Chun1; Bao, Jie1
出版日期2020-07
会议日期2020-07-28
会议地点Shenyang, China
DOI10.1109/ICPICS50287.2020.9202118
页码651-656
英文摘要

Image noise plays a vital role in digital image processing. However, in some specific application scenarios, random noise has an uncontrollable effect on digital image processing. Besides, a large number of hyper parameters which need to be fine-tuned can lead to inefficient projects. Therefore, we propose a Image Noise Level Classification(INLC) technique for specific application scenarios by comparing image quality assessment(IQA) methods, fitting curves and designing two neural networks. For low-accuracy, we come up with a soft way by setting a tolerance rate to achieve a higher acceptable accuracy. Experiments show that our INLC is more accurate and efficient.

产权排序第2完成单位
资助机构N/A
会议录Proceedings of 2020 IEEE International Conference on Power, Intelligent Computing and Systems, ICPICS 2020
会议录出版者Institute of Electrical and Electronics Engineers Inc.
文献子类Conference article (CA)
学科主题计算机科学技术
语种英语
资助项目N/A
ISBN号9781728198736
源URL[http://ir.ynao.ac.cn/handle/114a53/23721]  
专题云南天文台_丽江天文观测站(南方基地)
作者单位1.Chengdu Fourier Electronic Technology Co., Ltd, R and D Department, Chengdu, China
2.Yunnan Observatories, Chinese Academy of Science, Kunming, China
推荐引用方式
GB/T 7714
Luo, Geng,Zhao ZC,Long Q,et al. Image Noise Level Classification Technique Based on Image Quality Assessment[C]. 见:. Shenyang, China. 2020-07-28.

入库方式: OAI收割

来源:云南天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。