热门
Temporal Pattern-Aware QoS Prediction via Biased Non-Negative Latent Factorization of Tensors
文献类型:期刊论文
作者 | Luo, Xin3,4,5![]() |
刊名 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
出版日期 | 2020-05-01 |
卷号 | 50期号:5页码:1798-1809 |
关键词 | Quality of service Hidden Markov models Data models Training Web services Time factors Latent factor analysis (LFA) latent factorization of tensor learning temporal pattern linear bias (LB) non-negative latent factorization of tensor non-negativity constraint quality-of-service (QoS) prediction |
ISSN号 | 2168-2267 |
DOI | 10.1109/TCYB.2019.2903736 |
通讯作者 | Yuan, Huaqiang(yuanhq@dgut.edu.cn) ; Zhou, MengChu(zhou@njit.edu) |
英文摘要 | Quality-of-service (QoS) data vary over time, making it vital to capture the temporal patterns hidden in such dynamic data for predicting missing ones with high accuracy. However, currently latent factor (LF) analysis-based QoS-predictors are mostly defined on static QoS data without the consideration of such temporal dynamics. To address this issue, this paper presents a biased non-negative latent factorization of tensors (BNLFTs) model for temporal pattern-aware QoS prediction. Its main idea is fourfold: 1) incorporating linear biases into the model for describing QoS fluctuations; 2) constraining the model to be non-negative for describing QoS non-negativity; 3) deducing a single LF-dependent, non-negative, and multiplicative update scheme for training the model; and 4) incorporating an alternating direction method into the model for faster convergence. The empirical studies on two dynamic QoS datasets from real applications show that compared with the state-of-the-art QoS-predictors, BNLFT represents temporal patterns more precisely with high computational efficiency, thereby achieving the most accurate predictions for missing QoS data. |
资助项目 | National Natural Science Foundation of China[61772493] ; National Natural Science Foundation of China[91646114] ; National Natural Science Foundation of China[61602352] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyfX0020] ; Chongqing Research Program of Technology Innovation and Application[cstc2017zdcy-zdyf0554] ; Chongqing Research Program of Technology Innovation and Application[cstc2017rgzn-zdyf0118] ; Chongqing Cultivation Program of Innovation and Entrepreneurship Demonstration Group[cstc2017kjrc-cxcytd0149] ; Chongqing Overseas Scholars Innovation Program[cx2017012] ; Chongqing Overseas Scholars Innovation Program[cx2018011] ; Pioneer Hundred Talents Program of Chinese Academy of Sciences |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000528622000002 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.138/handle/2HOD01W0/10901] ![]() |
专题 | 中国科学院重庆绿色智能技术研究院 |
通讯作者 | Yuan, Huaqiang; Zhou, MengChu |
作者单位 | 1.New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA 2.Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China 3.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China 4.Chinese Acad Sci, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China 5.Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 | Luo, Xin,Wu, Hao,Yuan, Huaqiang,et al. Temporal Pattern-Aware QoS Prediction via Biased Non-Negative Latent Factorization of Tensors[J]. IEEE TRANSACTIONS ON CYBERNETICS,2020,50(5):1798-1809. |
APA | Luo, Xin,Wu, Hao,Yuan, Huaqiang,&Zhou, MengChu.(2020).Temporal Pattern-Aware QoS Prediction via Biased Non-Negative Latent Factorization of Tensors.IEEE TRANSACTIONS ON CYBERNETICS,50(5),1798-1809. |
MLA | Luo, Xin,et al."Temporal Pattern-Aware QoS Prediction via Biased Non-Negative Latent Factorization of Tensors".IEEE TRANSACTIONS ON CYBERNETICS 50.5(2020):1798-1809. |
入库方式: OAI收割
来源:重庆绿色智能技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。