中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Image fusion based on multiscale transform and sparse representation to enhance terahertz images

文献类型:期刊论文

作者Mao, Qi2; Zhu, Yunlong4; Lv, Cixing1; Lu, Yao1; Yan, Xiaohui1; Wei, Dongshan1; Yan, Shihan3; Liu, Jingbo1
刊名OPTICS EXPRESS
出版日期2020-08-17
卷号28期号:17页码:25293-25307
ISSN号1094-4087
DOI10.1364/OE.396604
通讯作者Zhu, Yunlong(zyl@fudan.edu.cn) ; Lv, Cixing(cixinglv@163.com)
英文摘要High-quality terahertz (THz) images are vital to integrated circuit (IC) manufacturing. Due to the unique sensitivity of THz waves to different materials, the images obtained from the point-spread function (PSF) model have fewer image details and less texture information in some frequency bands. This paper presents an image fusion technique to enhance the resolution of THz IC images. The source images obtained from the PSF model are processed by a fusion method combining a multiscale transform (MST) and sparse representation (SR). The low-pass band is handled by sparse representation, and the high-pass band is fused by the conventional "max-absolute" rule. From both objective and visual perspectives, four popular multiscale transforms-the Laplacian pyramid, the ratio of low-pass pyramids, the dual-tree complex wavelet transform and the curvelet transform-are thoroughly compared at different decomposition levels ranging from one to four. This work demonstrates the feasibility of using image fusion to enhance the resolution of THz IC images. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
资助项目National Key Research and Development Program of China[2018YFB1004004] ; National Key Research and Development Program of China[2018YFB1702701]
WOS研究方向Optics
语种英语
WOS记录号WOS:000560936200078
出版者OPTICAL SOC AMER
源URL[http://119.78.100.138/handle/2HOD01W0/11705]  
专题中国科学院重庆绿色智能技术研究院
通讯作者Zhu, Yunlong; Lv, Cixing
作者单位1.Dongguan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523808, Peoples R China
2.Dongbei Univ Finance & Econ, Sch Management Sci & Engn, Dalian 116025, Peoples R China
3.Chongqing Inst Green & Intelligent Technol, Chongqing Engn Res Ctr High Resolut & Three Dimen, Chongqing 400714, Peoples R China
4.Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
推荐引用方式
GB/T 7714
Mao, Qi,Zhu, Yunlong,Lv, Cixing,et al. Image fusion based on multiscale transform and sparse representation to enhance terahertz images[J]. OPTICS EXPRESS,2020,28(17):25293-25307.
APA Mao, Qi.,Zhu, Yunlong.,Lv, Cixing.,Lu, Yao.,Yan, Xiaohui.,...&Liu, Jingbo.(2020).Image fusion based on multiscale transform and sparse representation to enhance terahertz images.OPTICS EXPRESS,28(17),25293-25307.
MLA Mao, Qi,et al."Image fusion based on multiscale transform and sparse representation to enhance terahertz images".OPTICS EXPRESS 28.17(2020):25293-25307.

入库方式: OAI收割

来源:重庆绿色智能技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。