Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model
文献类型:期刊论文
作者 | Wang, Yaolin2; Liao, Zinan2; Mathieu, Stephanie2; Bin F(宾峰)1,2![]() |
刊名 | JOURNAL OF HAZARDOUS MATERIALS
![]() |
出版日期 | 2021-02-15 |
卷号 | 404页码:10 |
关键词 | Machine learning Non-thermal plasma Biomass gasification Tar reforming Naphthalene |
ISSN号 | 0304-3894 |
DOI | 10.1016/j.jhazmat.2020.123965 |
通讯作者 | Bin, Feng(binfeng@imech.ac.cn) ; Tu, Xin(xin.tu@liverpool.ac.uk) |
英文摘要 | We have developed a hybrid machine learning (ML) model for the prediction and optimization of a gliding arc plasma tar reforming process using naphthalene as a model tar compound from biomass gasification. A linear combination of three well-known algorithms, including artificial neural network (ANN), support vector regression (SVR) and decision tree (DT) has been established to deal with the multi-scale and complex plasma tar reforming process. The optimization of the hyper-parameters of each algorithm in the hybrid model has been achieved by using the genetic algorithm (GA), which shows a fairly good agreement between the experimental data and the predicted results from the ML model. The steam-to-carbon (S/C) ratio is found to be the most critical parameter for the conversion with a relative importance of 38%, while the discharge power is the most influential parameter in determining the energy efficiency with a relative importance of 58%. The coupling effects of different processing parameters on the key performance of the plasma reforming process have been evaluated. The optimal processing parameters are identified achieving the maximum tar conversion (67.2%), carbon balance (81.7%) and energy efficiency (7.8 g/kWh) simultaneously when the global desirability index I-2 reaches the highest value of 0.65. |
分类号 | 一类 |
WOS关键词 | NEURAL-NETWORK ; BIOMASS GASIFICATION ; TAR SURROGATE ; TOLUENE ; COMPOUND ; DECOMPOSITION ; CONVERSION ; METHANE ; REACTOR ; OPTIMIZATION |
资助项目 | European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant[722346] ; Royal Society Newton Advanced Fellowship[NAF/R1/180230] |
WOS研究方向 | Engineering ; Environmental Sciences & Ecology |
语种 | 英语 |
WOS记录号 | WOS:000598929700005 |
资助机构 | European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant ; Royal Society Newton Advanced Fellowship |
其他责任者 | Bin, Feng ; Tu, Xin |
源URL | [http://dspace.imech.ac.cn/handle/311007/85864] ![]() |
专题 | 力学研究所_高温气体动力学国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China 2.Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England; |
推荐引用方式 GB/T 7714 | Wang, Yaolin,Liao, Zinan,Mathieu, Stephanie,et al. Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model[J]. JOURNAL OF HAZARDOUS MATERIALS,2021,404:10. |
APA | Wang, Yaolin,Liao, Zinan,Mathieu, Stephanie,宾峰,&Tu, Xin.(2021).Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model.JOURNAL OF HAZARDOUS MATERIALS,404,10. |
MLA | Wang, Yaolin,et al."Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model".JOURNAL OF HAZARDOUS MATERIALS 404(2021):10. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。