Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall
文献类型:期刊论文
作者 | Tong, Fulin2,3,4; Sun, Dong2,3; Li, Xinliang1,4; Li XL(李新亮)![]() ![]() |
刊名 | CHINESE JOURNAL OF AERONAUTICS
![]() |
出版日期 | 2021-05-01 |
卷号 | 34期号:5页码:350-363 |
关键词 | Direct numerical simulation Low-frequency unsteadiness Shock waves Turbulent boundary layer Wavy-wall |
ISSN号 | 1000-9361 |
DOI | 10.1016/j.cja.2020.10.0161000-9361 |
通讯作者 | Li, Xinliang(lixl@imech.ac.cn) |
英文摘要 | The interaction of an impinging oblique shock wave with an angle of 30 degrees and a super-sonic turbulent boundary layer at Ma(infinity)=2.9 and Re-0 = 2400 over a wavy-wall is investigated through direct numerical simulation and compared with the interaction on a flat-plate under the same flow conditions. A sinusoidal wave with amplitude to wavelength ratio of 0.26 moves in the streamwise direction and is uniformly distributed across the spanwise direction. The influences of the wavy-wall on the interaction, including the characterization of the flow field, the skin-friction, pressure and the budget of turbulence kinetic energy, are systematically studied. The region of sep-aration grows slightly and decomposes into four bubbles. Local peaks of skin-friction are observed at the rear part of the interaction region. The low-frequency shock motion can be seen in the wall pressure spectra. Analyses of the turbulence kinetic energy budget indicate that both diffusion and transport significantly increase near the crests, balanced by an amplified dissipation in the near-wall region. Proper orthogonal decomposition analyses show that the most energetic structures are associated with the separated shock and the shear layer over the bubbles. Only the bubbles in the first two troughs are dominated by a low-frequency enlargement or shrinkage. (C) 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. |
WOS关键词 | UNSTEADINESS ; SEPARATION ; FLOWS |
资助项目 | National Key Research and Development Program of China[2019YFA0405300] ; National Key Research and Development Program of China[2016YFA0401200] ; National Natural Science Foundation of China[11972356] ; National Natural Science Foundation of China[91852203] ; LHD Youth Innovation Fund[LHD2019CX04] ; National Numerical Wind Tunnel Project |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000642455400004 |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; LHD Youth Innovation Fund ; National Numerical Wind Tunnel Project |
源URL | [http://dspace.imech.ac.cn/handle/311007/86593] ![]() |
专题 | 力学研究所_高温气体动力学国家重点实验室 |
通讯作者 | Li, Xinliang |
作者单位 | 1.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China 2.China Aerodynam Res & Dev Ctr, Computat Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China 3.China Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China 4.Chinese Acad Sci, Inst Mech, LHD, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Tong, Fulin,Sun, Dong,Li, Xinliang,et al. Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall[J]. CHINESE JOURNAL OF AERONAUTICS,2021,34(5):350-363. |
APA | Tong, Fulin,Sun, Dong,Li, Xinliang,李新亮,&Li XL.(2021).Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall.CHINESE JOURNAL OF AERONAUTICS,34(5),350-363. |
MLA | Tong, Fulin,et al."Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall".CHINESE JOURNAL OF AERONAUTICS 34.5(2021):350-363. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。