中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spectral bandwidth correction with optimal parameters based on deep learning

文献类型:期刊论文

作者Cui, Hao1,2,3; Xia, Guo1,2,3; Huang, Chan4; Wang, Jiangtao1,2,3; Bai, Lihao1,2,3
刊名APPLIED OPTICS
出版日期2021-02-10
卷号60
ISSN号1559-128X
DOI10.1364/AO.412526
通讯作者Xia, Guo(xiaguo@hfut.edu.cn)
英文摘要Spectral bandwidth correction is an effective way to obtain the original spectrum. However, the correct selection of optimal parameters used to recover the distortion spectrum in bandwidth correction algorithms has always been an important problem. To overcome the shortcomings of traditional parameter selection methods and obtain the optimal parameter, we propose a new optimal parameter selection method based on deep learning (DL). First, the database and neural network were constructed, and then the optimal parameters of corresponding algorithms were obtained through the training of the neural network. In order to verify the superiority of the optimal parameter selection method based on DL, the Levenberg-Marquardt (L-M) and Richardson-Lucy (R-L) algorithms with corresponding optimal parameters were compared with the traditional L-M and R-L algorithms to recover the distortion white light-emitting diode, Raman spectrum, and compact fluorescent lamp spectrum. The type A uncertainty and root mean square error values of the different cases were calculated. The results proved that, compared with the traditional methods for obtaining the optimal parameters, the neural network was capable of obtaining parameters that can make the bandwidth correction algorithm more efficient at recovering the distorted spectrum. (C) 2021 Optical Society of America
WOS关键词ALGORITHM ; SPECTROMETER ; DECONVOLUTION
资助项目Key Research and Development Program of Anhui Province[1804d08020310]
WOS研究方向Optics
语种英语
WOS记录号WOS:000617545500027
出版者OPTICAL SOC AMER
资助机构Key Research and Development Program of Anhui Province
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/120487]  
专题中国科学院合肥物质科学研究院
通讯作者Xia, Guo
作者单位1.Hefei Univ Technol, Acad Optoelect Technol, Hefei, Peoples R China
2.Special Display & Imaging Technol Innovat Ctr Anh, Hefei, Peoples R China
3.State Key Lab Adv Display Technol, Hefei, Peoples R China
4.Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Cui, Hao,Xia, Guo,Huang, Chan,et al. Spectral bandwidth correction with optimal parameters based on deep learning[J]. APPLIED OPTICS,2021,60.
APA Cui, Hao,Xia, Guo,Huang, Chan,Wang, Jiangtao,&Bai, Lihao.(2021).Spectral bandwidth correction with optimal parameters based on deep learning.APPLIED OPTICS,60.
MLA Cui, Hao,et al."Spectral bandwidth correction with optimal parameters based on deep learning".APPLIED OPTICS 60(2021).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。