Experiment data-driven modeling of tokamak discharge in EAST
文献类型:期刊论文
作者 | Wan,Chenguang1,2; Yu,Zhi2![]() ![]() ![]() ![]() |
刊名 | Nuclear Fusion
![]() |
出版日期 | 2021-04-29 |
卷号 | 61 |
关键词 | tokamak discharge modeling machine learning |
ISSN号 | 0029-5515 |
DOI | 10.1088/1741-4326/abf419 |
通讯作者 | Wan,Chenguang() ; Li,Jiangang() |
英文摘要 | AbstractA neural network model of tokamak discharge is developed based on the experimental dataset of a superconducting long-pulse tokamak (EAST) campaign 2016–2018. The purpose is to reproduce the response of diagnostic signals to actuator signals without introducing additional physical models. In the present work, the discharge curves of electron density ne, stored energy Wmhd, and loop voltage Vloop were reproduced from a series of actuator signals. For ne and Wmhd, the average similarity between the modeling results and the experimental data achieve 89% and 97%, respectively. The promising results demonstrate that the data-driven methodology provides an alternative to the physical-driven methodology for tokamak discharge modeling. The method presented in the manuscript has the potential of being used for validating the tokamak’s experimental proposals, which could advance and optimize experimental planning and validation. |
语种 | 英语 |
WOS记录号 | IOP:0029-5515-61-6-ABF419 |
出版者 | IOP Publishing |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/121849] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Wan,Chenguang; Li,Jiangang |
作者单位 | 1.University of Science and Technology of China, Hefei, 230026, China 2.Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China |
推荐引用方式 GB/T 7714 | Wan,Chenguang,Yu,Zhi,Wang,Feng,et al. Experiment data-driven modeling of tokamak discharge in EAST[J]. Nuclear Fusion,2021,61. |
APA | Wan,Chenguang,Yu,Zhi,Wang,Feng,Liu,Xiaojuan,&Li,Jiangang.(2021).Experiment data-driven modeling of tokamak discharge in EAST.Nuclear Fusion,61. |
MLA | Wan,Chenguang,et al."Experiment data-driven modeling of tokamak discharge in EAST".Nuclear Fusion 61(2021). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。