11 TOPS photonic convolutional accelerator for optical neural networks
文献类型:期刊论文
作者 | Xu, Xingyuan1,9; Tan, Mengxi1; Corcoran, Bill2; Wu, Jiayang1; Boes, Andreas3; Nguyen, Thach G.3; Chu, Sai T.4; Little, Brent E.5; Hicks, Damien G.1,6; Morandotti, Roberto7,8 |
刊名 | NATURE
![]() |
出版日期 | 2021-01-07 |
卷号 | 589期号:7840页码:44-+ |
ISSN号 | 0028-0836;1476-4687 |
DOI | 10.1038/s41586-020-03063-0 |
产权排序 | 5 |
英文摘要 | Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis(1-7). Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (10(12)) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition. |
语种 | 英语 |
WOS记录号 | WOS:000606497700007 |
出版者 | NATURE RESEARCH |
源URL | [http://ir.opt.ac.cn/handle/181661/94263] ![]() |
专题 | 西安光学精密机械研究所_瞬态光学技术国家重点实验室 |
通讯作者 | Moss, David J. |
作者单位 | 1.Swinburne Univ Technol, Opt Sci Ctr, Hawthorn, Vic, Australia 2.Monash Univ, Dept Elect & Comp Syst Engn, Clayton, Vic, Australia 3.RMIT Univ, Sch Engn, Melbourne, Vic, Australia 4.City Univ Hong Kong, Dept Phys, Tat Chee Ave, Hong Kong, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China 6.Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic, Australia 7.INRS Energie Mat & Telecommun, Varennes, PQ, Canada 8.Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China 9.Monash Univ, Dept Elect & Comp Syst Engn, Electrophoton Lab, Clayton, Vic, Australia |
推荐引用方式 GB/T 7714 | Xu, Xingyuan,Tan, Mengxi,Corcoran, Bill,et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. NATURE,2021,589(7840):44-+. |
APA | Xu, Xingyuan.,Tan, Mengxi.,Corcoran, Bill.,Wu, Jiayang.,Boes, Andreas.,...&Moss, David J..(2021).11 TOPS photonic convolutional accelerator for optical neural networks.NATURE,589(7840),44-+. |
MLA | Xu, Xingyuan,et al."11 TOPS photonic convolutional accelerator for optical neural networks".NATURE 589.7840(2021):44-+. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。