中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification

文献类型:期刊论文

作者Wang, Wenning1,2,3,4; Liu, Xuebin1,3; Mou, Xuanqin2
刊名REMOTE SENSING
出版日期2021-02-01
卷号13期号:4页码:20
关键词hyperspectral classification data augmentation structural features small sample classification
ISSN号2072-4292
DOI10.3390/rs13040547
产权排序1
英文摘要

For both traditional classification and current popular deep learning methods, the limited sample classification problem is very challenging, and the lack of samples is an important factor affecting the classification performance. Our work includes two aspects. First, the unsupervised data augmentation for all hyperspectral samples not only improves the classification accuracy greatly with the newly added training samples, but also further improves the classification accuracy of the classifier by optimizing the augmented test samples. Second, an effective spectral structure extraction method is designed, and the effective spectral structure features have a better classification accuracy than the true spectral features.

资助项目Natural Science Foundation of China[61501456] ; Natural Science Foundation of China[11701337] ; National Natural Science Foundation of China[11701337] ; National Natural Science Foundation of China[.61501456]
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000624451200001
出版者MDPI
资助机构Natural Science Foundation of China ; National Natural Science Foundation of China
源URL[http://ir.opt.ac.cn/handle/181661/94638]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Wang, Wenning
作者单位1.Chinese Acad Sci, Key Lab Spectral Imaging Technol CAS, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
2.Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Xian 710049, Peoples R China
3.Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
4.Shandong Agr Univ, Sch Informat Sci & Engn, Tai An, Shandong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wenning,Liu, Xuebin,Mou, Xuanqin. Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification[J]. REMOTE SENSING,2021,13(4):20.
APA Wang, Wenning,Liu, Xuebin,&Mou, Xuanqin.(2021).Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification.REMOTE SENSING,13(4),20.
MLA Wang, Wenning,et al."Data Augmentation and Spectral Structure Features for Limited Samples Hyperspectral Classification".REMOTE SENSING 13.4(2021):20.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。