中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Framework to Predict High-Resolution Spatiotemporal PM(2.5)Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China

文献类型:期刊论文

作者Zhang, Guangyuan2; Lu, Haiyue3; Dong, Jin1; Poslad, Stefan2; Li, Runkui1,4; Zhang, Xiaoshuai2; Rui, Xiaoping3
刊名REMOTE SENSING
出版日期2020-09-01
卷号12期号:17页码:33
关键词PM2.5 AOD XGBoost prediction deep learning ConvLSTM SARIMA
DOI10.3390/rs12172825
通讯作者Rui, Xiaoping(ruixp@hhu.edu.cn)
英文摘要Air-borne particulate matter, PM2.5(PM having a diameter of less than 2.5 micrometers), has aroused widespread concern and is a core indicator of severe air pollution in many cities globally. In our study, we present a validated framework to predict the daily PM(2.5)distributions, exemplified by a use case of Shijiazhuang City, China, based on daily aerosol optical depth (AOD) datasets. The framework involves obtaining the high-resolution spatiotemporal AOD distributions, estimation of the spatial distributions of PM(2.5)and the prediction of these based on a convolutional long short-term memory (ConvLSTM) model. In the estimation part, the eXtreme gradient boosting (XGBoost) model has been determined as the estimation model with the lowest root mean square error (RMSE) of 32.86 mu g/m(3)and the highest coefficient of determination regression score function (R-2) of 0.71, compared to other common models used as a baseline for comparison (linear, ridge, least absolute shrinkage and selection operator (LASSO) and cubist). For the prediction part, after validation and comparison with a seasonal autoregressive integrated moving average (SARIMA), which is a traditional time-series prediction model, in both time and space, the ConvLSTM gives a more accurate performance for the prediction, with a total average prediction RMSE of 14.94 mu g/m(3)compared to SARIMA's 17.41 mu g/m(3). Furthermore, ConvLSTM is more stable and with less fluctuations for the prediction of PM(2.5)in time, and it can also eliminate better the spatial predicted errors compared to SARIMA.
WOS关键词AEROSOL OPTICAL DEPTH ; PRINCIPAL COMPONENT ANALYSIS ; PARTICULATE MATTER ; PM2.5 ; SATELLITE ; EXPOSURE ; PM10 ; ASSOCIATIONS ; REGRESSION ; POLLUTION
资助项目National Key Research and Development Program of China[2017YFB0503605] ; National Natural Science Foundation of China[41771478] ; National Natural Science Foundation of China[41771435] ; Fundamental Research Funds for the Central Universities[2019B02514] ; Beijing Natural Science Foundation[8172046] ; China Scholarship Council (CSC) ; Queen Mary University of London
WOS研究方向Remote Sensing
语种英语
WOS记录号WOS:000569943700001
出版者MDPI
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Beijing Natural Science Foundation ; China Scholarship Council (CSC) ; Queen Mary University of London
源URL[http://ir.igsnrr.ac.cn/handle/311030/156875]  
专题中国科学院地理科学与资源研究所
通讯作者Rui, Xiaoping
作者单位1.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
2.Queen Mary Univ London, Sch Elect Engn & Comp Sci, IoT Lab, London E1 4NS, England
3.Hohai Univ, Sch Earth Sci & Engn, Nanjing 211000, Peoples R China
4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Guangyuan,Lu, Haiyue,Dong, Jin,et al. A Framework to Predict High-Resolution Spatiotemporal PM(2.5)Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China[J]. REMOTE SENSING,2020,12(17):33.
APA Zhang, Guangyuan.,Lu, Haiyue.,Dong, Jin.,Poslad, Stefan.,Li, Runkui.,...&Rui, Xiaoping.(2020).A Framework to Predict High-Resolution Spatiotemporal PM(2.5)Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China.REMOTE SENSING,12(17),33.
MLA Zhang, Guangyuan,et al."A Framework to Predict High-Resolution Spatiotemporal PM(2.5)Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China".REMOTE SENSING 12.17(2020):33.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。