中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Modeling the Carbon Cycle of a Subtropical Chinese Fir Plantation Using a Multi-Source Data Fusion Approach

文献类型:期刊论文

作者Hu, Longwei2; He, Honglin3,4,5; Shen, Yan2; Ren, Xiaoli3,4; Yan, Shao-kui6; Xiang, Wenhua1,2; Ge, Rong3,4,7; Niu, Zhongen3,4,7; Xu, Qian3,4,7; Zhu, Xiaobo3,4,8,9
刊名FORESTS
出版日期2020-04-01
卷号11期号:4页码:16
关键词process-based terrestrial ecosystem model model-data fusion multi-source data carbon cycle plantation
DOI10.3390/f11040369
通讯作者He, Honglin(hehl@igsnrr.ac.cn)
英文摘要Process-based terrestrial ecosystem models are increasingly being used to predict carbon (C) cycling in forest ecosystems. Given the complexity of ecosystems, these models inevitably have certain deficiencies, and thus the model parameters and simulations can be highly uncertain. Through long-term direct observation of ecosystems, numerous different types of data have accumulated, providing valuable opportunities to determine which sources of data can most effectively reduce the uncertainty of simulation results, and thereby improve simulation accuracy. In this study, based on a long-term series of observations (biometric and flux data) of a subtropical Chinese fir plantation ecosystem, we use a model-data fusion framework to evaluate the effects of different constrained data on the parameter estimation and uncertainty of related variables, and systematically evaluate the uncertainty of parameters. We found that plant C pool observational data contributed to significant reductions in the uncertainty of parameter estimates and simulation, as these data provide information on C pool size. However, none of the data effectively constrained the foliage C pool, indicating that this pool should be a target for future observational activities. The assimilation of soil organic C observations was found to be important for reducing the uncertainty or bias in soil C pools. The key findings of this study are that the assimilation of multiple time scales and types of data stream are critical for model constraint and that the most accurate simulation results are obtained when all available biometric and flux data are used as constraints. Accordingly, our results highlight the importance of using multi-source data when seeking to constrain process-based terrestrial ecosystem models.
WOS关键词ENSEMBLE KALMAN FILTER ; MULTIPLE DATA STREAMS ; LAND-SURFACE MODEL ; DATA-ASSIMILATION ; FOREST ECOSYSTEMS ; ESTIMATING PARAMETERS ; WATER FLUXES ; SEQUESTRATION ; PROJECTIONS ; INVERSION
资助项目Strategic Priority Research Program of Chinese Academy of Science[XDA19020301] ; National Natural Science Foundation of China[41571424]
WOS研究方向Forestry
语种英语
WOS记录号WOS:000534632500007
出版者MDPI
资助机构Strategic Priority Research Program of Chinese Academy of Science ; National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/159522]  
专题中国科学院地理科学与资源研究所
通讯作者He, Honglin
作者单位1.Natl Engn Lab Appl Technol Forestry & Ecol South, Changsha 410004, Peoples R China
2.Cent South Univ Forestry & Technol, Changsha 410004, Peoples R China
3.Chinese Acad Sci, Key Lab Ecosyst Network Observat & Modeling, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
4.Chinese Acad Sci, Natl Ecosyst Sci Data Ctr, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
5.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
6.Chinese Acad Sci, Huitong Expt Stn Forest Ecol, State Key Lab Forest & Soil Ecol, Inst Appl Ecol, Shenyang 110164, Peoples R China
7.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
8.Minist Educ, Chongqing Jinfo Mt Field Sci Observat & Res Stn K, Chongqing 400715, Peoples R China
9.Southwest Univ, Chongqing Engn Res Ctr Remote Sensing Big Data Ap, Sch Geog Sci, Chongqing 400715, Peoples R China
推荐引用方式
GB/T 7714
Hu, Longwei,He, Honglin,Shen, Yan,et al. Modeling the Carbon Cycle of a Subtropical Chinese Fir Plantation Using a Multi-Source Data Fusion Approach[J]. FORESTS,2020,11(4):16.
APA Hu, Longwei.,He, Honglin.,Shen, Yan.,Ren, Xiaoli.,Yan, Shao-kui.,...&Zhu, Xiaobo.(2020).Modeling the Carbon Cycle of a Subtropical Chinese Fir Plantation Using a Multi-Source Data Fusion Approach.FORESTS,11(4),16.
MLA Hu, Longwei,et al."Modeling the Carbon Cycle of a Subtropical Chinese Fir Plantation Using a Multi-Source Data Fusion Approach".FORESTS 11.4(2020):16.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。