PyCLiPSM: Harnessing heterogeneous computing resources on CPUs and GPUs for accelerated digital soil mapping
文献类型:期刊论文
作者 | Zhang, Guiming1; Zhu, A-Xing2,3,6,7![]() ![]() |
刊名 | TRANSACTIONS IN GIS
![]() |
出版日期 | 2021-02-16 |
页码 | 23 |
ISSN号 | 1361-1682 |
DOI | 10.1111/tgis.12730 |
通讯作者 | Zhang, Guiming(guiming.zhang@du.edu) |
英文摘要 | Digital soil mapping (DSM) at high spatial resolutions over large areas often demands considerable computing power. This study aims to harness the heterogeneous computing resources on multi-core central processing units (CPUs) and graphics processing units (GPUs) to accelerate DSM by implementing PyCLiPSM, a parallel version of the iPSM (individual predictive soil mapping) algorithm which represents the type of geospatial algorithms that is data- and compute-intensive and highly parallelizable. PyCLiPSM was implemented in Python based on the PyOpenCL parallel programming library, which runs on any operating system and exploits the computing power of both CPUs and GPUs. Experiments show that PyCLiPSM can effectively leverage multi-core CPUs and GPUs to speed up DSM tasks. PyCLiPSM is open-source and freely available. Using PyCLiPSM as an example, we advocate implementing parallel geospatial algorithms using the PyOpenCL framework to harness the heterogeneous computing resources available to researchers and practitioners for accelerated geospatial analysis. |
资助项目 | University of Denver ; National Natural Science Foundation of China[41601212] ; National Natural Science Foundation of China[41871300] |
WOS研究方向 | Geography |
语种 | 英语 |
WOS记录号 | WOS:000618617500001 |
出版者 | WILEY |
资助机构 | University of Denver ; National Natural Science Foundation of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/160637] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Zhang, Guiming |
作者单位 | 1.Univ Denver, Dept Geog & Environm, Denver, CO USA 2.Univ Wisconsin, Dept Geog, Madison, WI 53706 USA 3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China 4.Santa Monica Coll, Earth Sci Dept, Santa Monica, CA USA 5.Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr Geospatial Informat, Shenzhen, Peoples R China 6.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Peoples R China 7.Nanjing Normal Univ, Sch Geog, Nanjing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Guiming,Zhu, A-Xing,Liu, Jing,et al. PyCLiPSM: Harnessing heterogeneous computing resources on CPUs and GPUs for accelerated digital soil mapping[J]. TRANSACTIONS IN GIS,2021:23. |
APA | Zhang, Guiming,Zhu, A-Xing,Liu, Jing,Guo, Shanxin,&Zhu, Yunqiang.(2021).PyCLiPSM: Harnessing heterogeneous computing resources on CPUs and GPUs for accelerated digital soil mapping.TRANSACTIONS IN GIS,23. |
MLA | Zhang, Guiming,et al."PyCLiPSM: Harnessing heterogeneous computing resources on CPUs and GPUs for accelerated digital soil mapping".TRANSACTIONS IN GIS (2021):23. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。