中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust unsupervised small area change detection from SAR imagery using deep learning

文献类型:期刊论文

作者Zhang, Xinzheng1,2; Su, Hang1; Zhang, Ce3,4; Gu, Xiaowei5; Tan, Xiaoheng1,2; Atkinson, Peter M.3,6,7
刊名ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
出版日期2021-03-01
卷号173页码:79-94
关键词Change detection Synthetic aperture radar Difference image Fuzzy c-means algorithm Deep learning
ISSN号0924-2716
DOI10.1016/j.isprsjprs.2021.01.004
通讯作者Zhang, Xinzheng(zhangxinzheng03@126.com) ; Zhang, Ce(c.zhang9@lancaster.ac.uk)
英文摘要Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection.
WOS关键词RATIO APPROACH ; NETWORK
资助项目National Science Foundation of China[61301224] ; Chongqing Basic and Frontier Research Project[cstc2017jcyjA1378]
WOS研究方向Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000640986100006
出版者ELSEVIER
资助机构National Science Foundation of China ; Chongqing Basic and Frontier Research Project
源URL[http://ir.igsnrr.ac.cn/handle/311030/161626]  
专题中国科学院地理科学与资源研究所
通讯作者Zhang, Xinzheng; Zhang, Ce
作者单位1.Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
2.Chongqing Key Lab Space Informat Network & Intell, Chongqing 400044, Peoples R China
3.Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
4.UK Ctr Ecol & Hydrol, Lib Ave, Lancaster LA1 4AP, England
5.Aberystwyth Univ, Dept Comp Sci, Aberystwyth SY23 3DB, Dyfed, Wales
6.Univ Southampton, Geog & Environm Sci, Southampton SO17 1BJ, Hants, England
7.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, 11A Datun Rd, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xinzheng,Su, Hang,Zhang, Ce,et al. Robust unsupervised small area change detection from SAR imagery using deep learning[J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2021,173:79-94.
APA Zhang, Xinzheng,Su, Hang,Zhang, Ce,Gu, Xiaowei,Tan, Xiaoheng,&Atkinson, Peter M..(2021).Robust unsupervised small area change detection from SAR imagery using deep learning.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,173,79-94.
MLA Zhang, Xinzheng,et al."Robust unsupervised small area change detection from SAR imagery using deep learning".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 173(2021):79-94.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。