中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised Feature Selection using Pseudo Label Approximation

文献类型:会议论文

作者Deng, Ren2; Liu, Ye2; Luo, Liyan2; Chen, DongJing2; Li, Xijie1
出版日期2021-02-26
会议日期2021-02-26
会议地点Virtual, Online, China
DOI10.1145/3457682.3457758
页码498-502
英文摘要

Feature selection is a machine learning technique that selects a representative subset of all features available in order to reduce the time and space needed to process high-dimensional data. Traditional feature selection methods include filter, wrapper, and embedded approaches. However, many conventional methods' performances are not suitable in many contexts. This paper proposes a new unsupervised feature selection model based on pseudo label approximation. The new derived model incorporates a projection error, a sparsity regularization, and a manifold regularization term that preserves the manifold structure of the original data. Finally, implementation of the new model onto five distinct datasets validates the effectiveness of the proposed model. © 2021 ACM.

产权排序2
会议录2021 13th International Conference on Machine Learning and Computing, ICMLC 2021
会议录出版者Association for Computing Machinery
语种英语
ISBN号9781450389310
源URL[http://ir.opt.ac.cn/handle/181661/94953]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xian, China
2.Amazingx Academy, China;
推荐引用方式
GB/T 7714
Deng, Ren,Liu, Ye,Luo, Liyan,et al. Unsupervised Feature Selection using Pseudo Label Approximation[C]. 见:. Virtual, Online, China. 2021-02-26.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。