Unsupervised Feature Selection using Pseudo Label Approximation
文献类型:会议论文
作者 | Deng, Ren2; Liu, Ye2; Luo, Liyan2; Chen, DongJing2; Li, Xijie1 |
出版日期 | 2021-02-26 |
会议日期 | 2021-02-26 |
会议地点 | Virtual, Online, China |
DOI | 10.1145/3457682.3457758 |
页码 | 498-502 |
英文摘要 | Feature selection is a machine learning technique that selects a representative subset of all features available in order to reduce the time and space needed to process high-dimensional data. Traditional feature selection methods include filter, wrapper, and embedded approaches. However, many conventional methods' performances are not suitable in many contexts. This paper proposes a new unsupervised feature selection model based on pseudo label approximation. The new derived model incorporates a projection error, a sparsity regularization, and a manifold regularization term that preserves the manifold structure of the original data. Finally, implementation of the new model onto five distinct datasets validates the effectiveness of the proposed model. © 2021 ACM. |
产权排序 | 2 |
会议录 | 2021 13th International Conference on Machine Learning and Computing, ICMLC 2021
![]() |
会议录出版者 | Association for Computing Machinery |
语种 | 英语 |
ISBN号 | 9781450389310 |
源URL | [http://ir.opt.ac.cn/handle/181661/94953] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xian, China 2.Amazingx Academy, China; |
推荐引用方式 GB/T 7714 | Deng, Ren,Liu, Ye,Luo, Liyan,et al. Unsupervised Feature Selection using Pseudo Label Approximation[C]. 见:. Virtual, Online, China. 2021-02-26. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。