中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Improved Pulse-Coupled Neural Network Model for Pansharpening

文献类型:期刊论文

作者Li, Xiaojun1,2; Yan, Haowen1,2; Xie, Weiying3; Kang, Lu4; Tian, Yi5
刊名SENSORS
出版日期2020-05-01
卷号20期号:10页码:20
关键词multispectral image pansharpening pulse-coupled neural network high-resolution image image fusion
DOI10.3390/s20102764
通讯作者Yan, Haowen(yanhw@lzjtu.edu.cn)
英文摘要Pulse-coupled neural network (PCNN) and its modified models are suitable for dealing with multi-focus and medical image fusion tasks. Unfortunately, PCNNs are difficult to directly apply to multispectral image fusion, especially when the spectral fidelity is considered. A key problem is that most fusion methods using PCNNs usually focus on the selection mechanism either in the space domain or in the transform domain, rather than a details injection mechanism, which is of utmost importance in multispectral image fusion. Thus, a novel pansharpening PCNN model for multispectral image fusion is proposed. The new model is designed to acquire the spectral fidelity in terms of human visual perception for the fusion tasks. The experimental results, examined by different kinds of datasets, show the suitability of the proposed model for pansharpening.
WOS关键词IMAGE FUSION ; RESOLUTION ; CONTRAST ; QUALITY ; PCNN
资助项目National Key R&D Program of China[2017YFB0504201] ; National Natural Science Foundation of China[41861055] ; National Natural Science Foundation of China[41671447] ; National Natural Science Foundation of China[41761082] ; China Postdoctoral Science Foundation[2019M653795] ; lzjtu EP Program[201806]
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
语种英语
WOS记录号WOS:000539323700018
出版者MDPI
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; lzjtu EP Program
源URL[http://ir.igsnrr.ac.cn/handle/311030/162186]  
专题中国科学院地理科学与资源研究所
通讯作者Yan, Haowen
作者单位1.Lanzhou Jiaotong Univ, Fac Geomat, Lanzhou 730070, Peoples R China
2.Natl Local Joint Engn Res Ctr Technol & Applicat, Lanzhou 730070, Peoples R China
3.Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
5.Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Robot & Intelligent Syst, Shenzhen 518172, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiaojun,Yan, Haowen,Xie, Weiying,et al. An Improved Pulse-Coupled Neural Network Model for Pansharpening[J]. SENSORS,2020,20(10):20.
APA Li, Xiaojun,Yan, Haowen,Xie, Weiying,Kang, Lu,&Tian, Yi.(2020).An Improved Pulse-Coupled Neural Network Model for Pansharpening.SENSORS,20(10),20.
MLA Li, Xiaojun,et al."An Improved Pulse-Coupled Neural Network Model for Pansharpening".SENSORS 20.10(2020):20.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。