中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information

文献类型:期刊论文

作者Wang, Bao3,4; Wang, Bin4; Wu, Wenzhou5,6; Xi, Changbai3; Wang, Jiechen1,2,3
刊名ACTA OCEANOLOGICA SINICA
出版日期2020-05-01
卷号39期号:5页码:157-167
关键词sea-water level prediction ANFIS wavelet decomposition wind
ISSN号0253-505X
DOI10.1007/s13131-020-1569-1
通讯作者Wang, Jiechen(wangjiechen@nju.edu.cn)
英文摘要Sea-water-level (SWL) prediction significantly impacts human lives and maritime activities in coastal regions, particularly at offshore locations with shallow water levels. Long-term SWL forecasts, which are conventionally obtained via harmonic analysis, become ineffective when nonperiodic meteorological events predominate. Artificial intelligence combined with other data-processing methods can effectively forecast highly nonlinear and nonstationary inflow patterns by recognizing historical relationships between input and output. These techniques are considerably useful in time-series data predictions. This paper reports the development of a hybrid model to realize accurate multihour SWL forecasting by combining an adaptive neuro-fuzzy inference system (ANFIS) with wavelet decomposition while using sea-level anomaly (SLA) and wind-shear-velocity components as inputs. Numerous wavelet-ANFIS (WANFIS) models have been tested using different inputs to assess their applicability as alternatives to the artificial neural network (ANN), wavelet ANN (WANN), and ANFIS models. Different error definitions have been used to evaluate results, which indicate that integrated wavelet-decomposition and ANFIS models improve the accuracy of SWL prediction and that the inputs of SLA and wind-shear velocity exhibit superior prediction capability compared to conventional SWL-only models.
WOS关键词HARMONIC-ANALYSIS ; INFERENCE SYSTEM ; STORM-SURGE ; MODEL ; METHODOLOGY ; MACHINE ; TAIWAN ; HARBOR ; TIDES ; COAST
资助项目National Key R&D Program of China[2016YFC1402609]
WOS研究方向Oceanography
语种英语
WOS记录号WOS:000540198800017
出版者SPRINGER
资助机构National Key R&D Program of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/162254]  
专题中国科学院地理科学与资源研究所
通讯作者Wang, Jiechen
作者单位1.Nanjing Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
2.Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Peoples R China
3.Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
4.Natl Marine Environm Forecasting Ctr, Beijing 100081, Peoples R China
5.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
6.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Wang, Bao,Wang, Bin,Wu, Wenzhou,et al. Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information[J]. ACTA OCEANOLOGICA SINICA,2020,39(5):157-167.
APA Wang, Bao,Wang, Bin,Wu, Wenzhou,Xi, Changbai,&Wang, Jiechen.(2020).Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information.ACTA OCEANOLOGICA SINICA,39(5),157-167.
MLA Wang, Bao,et al."Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information".ACTA OCEANOLOGICA SINICA 39.5(2020):157-167.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。