Research on the Spatio-Temporal Dynamic Evolution Characteristics and Influencing Factors of Electrical Power Consumption in Three Urban Agglomerations of Yangtze River Economic Belt, China Based on DMSP/OLS Night Light Data
文献类型:期刊论文
作者 | Zhong, Yang1,2; Lin, Aiwen1,2; Xiao, Chiwei3; Zhou, Zhigao1,2 |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2021-03-01 |
卷号 | 13期号:6页码:33 |
关键词 | YREB three urban agglomerations DMSP OLS night light data EPC spatiotemporal dynamics Geographically weighted regression (GWR) model random forest algorithm |
DOI | 10.3390/rs13061150 |
通讯作者 | Lin, Aiwen(awlin@whu.edu.cn) |
英文摘要 | In this paper, based on electrical power consumption (EPC) data extracted from DMSP/OLS night light data, we select three national-level urban agglomerations in China's Yangtze River Economic Belt(YREB), includes Yangtze River Delta urban agglomerations(YRDUA), urban agglomeration in the middle reaches of the Yangtze River(UAMRYR), and Chengdu-Chongqing urban agglomeration(CCUA) as the research objects. In addition, the coefficient of variation (CV), kernel density analysis, cold hot spot analysis, trend analysis, standard deviation ellipse and Moran's I Index were used to analyze the Spatio-temporal Dynamic Evolution Characteristics of EPC in the three urban agglomerations of the YREB. In addition, we also use geographically weighted regression (GWR) model and random forest algorithm to analyze the influencing factors of EPC in the three major urban agglomerations in YREB. The results of this study show that from 1992 to 2013, the CV of the EPC in the three urban agglomerations of YREB has been declining at the overall level. At the same time, the highest EPC value is in YRDUA, followed by UAMRYR and CCUA. In addition, with the increase of time, the high-value areas of EPC hot spots are basically distributed in YRDUA. The standard deviation ellipses of the EPC of the three urban agglomerations of YREB clearly show the characteristics of "east-west" spatial distribution. With the increase of time, the correlations and the agglomeration of the EPC in the three urban agglomerations of the YREB were both become more and more obvious. In terms of influencing factor analysis, by using GWR model, we found that the five influencing factors we selected basically have a positive impact on the EPC of the YREB. By using the Random forest algorithm, we found that the three main influencing factors of EPC in the three major urban agglomerations in the YREB are the proportion of secondary industry in GDP, Per capita disposable income of urban residents, and Urbanization rate. |
WOS关键词 | PATTERNS ; EMISSIONS ; GROWTH |
资助项目 | National Social Science Foundation of China[18ZDA040] |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000651980600001 |
出版者 | MDPI |
资助机构 | National Social Science Foundation of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/162845] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Lin, Aiwen |
作者单位 | 1.Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China 2.Wuhan Univ, Key Lab Geog Informat Syst, Wuhan 430079, Peoples R China 3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Zhong, Yang,Lin, Aiwen,Xiao, Chiwei,et al. Research on the Spatio-Temporal Dynamic Evolution Characteristics and Influencing Factors of Electrical Power Consumption in Three Urban Agglomerations of Yangtze River Economic Belt, China Based on DMSP/OLS Night Light Data[J]. REMOTE SENSING,2021,13(6):33. |
APA | Zhong, Yang,Lin, Aiwen,Xiao, Chiwei,&Zhou, Zhigao.(2021).Research on the Spatio-Temporal Dynamic Evolution Characteristics and Influencing Factors of Electrical Power Consumption in Three Urban Agglomerations of Yangtze River Economic Belt, China Based on DMSP/OLS Night Light Data.REMOTE SENSING,13(6),33. |
MLA | Zhong, Yang,et al."Research on the Spatio-Temporal Dynamic Evolution Characteristics and Influencing Factors of Electrical Power Consumption in Three Urban Agglomerations of Yangtze River Economic Belt, China Based on DMSP/OLS Night Light Data".REMOTE SENSING 13.6(2021):33. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。