中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improved machine learning approach for wavefront sensing

文献类型:期刊论文

作者Guo, Hongyang1,3,4; Xu, Yangjie1,3,4; Li, Qing1,2,3,4; Du, Shengping1,4; He, Dong1,4; Wang, Qiang1,4; Huang, Yongmei1,4
刊名Sensors (Switzerland)
出版日期2019-08-20
卷号19期号:16
关键词adaptive optics machine learning convolutional neural network deconvolution
ISSN号1424-8220
DOI10.3390/s19163533
文献子类期刊论文
英文摘要In the adaptive optics (AO) system, to improve the e_ectiveness and accuracy of wavefront sensing-less technology, a phase-based sensing approach using machine learning is proposed. In contrast to the traditional gradient-based optimization methods, the model we designed is based on an improved convolutional neural network. Specifically, the deconvolution layer, which reconstructs unknown input by measuring output, is introduced to represent the phase maps of the point spread functions at the in focus and defocus planes. The improved convolutional neural network is utilized to establish the nonlinear mapping between the input point spread functions and the corresponding phase maps of the optical system. Once well trained, the model can directly output the aberration map of the optical system with good precision. Adequate simulations and experiments are introduced to demonstrate the accuracy and real-time performance of the proposed method. The simulations show that even when atmospheric conditions D/r0 = 20, the detection root-mean-square of wavefront error of the proposed method is 0.1307 λ, which has a better accuracy than existing neural networks. When D/r0 = 15 and 10, the root-mean-square error is respectively 0.0909 λ and 0.0718 λ. It has certain applicative value in the case of medium and weak turbulence. The root-mean-square error of experiment results with D/r0 = 20 is 0.1304 λ, proving the correctness of simulations. Moreover, this method only needs 12 ms to accomplish the calculation and it has broad prospects for real-time wavefront sensing. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
WOS关键词PHASE-RETRIEVAL ALGORITHMS ; ADAPTIVE OPTICS ; SENSOR
WOS研究方向Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
语种英语
WOS记录号WOS:000484407200090
出版者MDPI AG, Postfach, Basel, CH-4005, Switzerland
源URL[http://ir.ioe.ac.cn/handle/181551/9802]  
专题光电技术研究所_光电工程总体研究室(一室)
作者单位1.The Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu; 610209, China;
2.School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 4 Section 2 North Jianshe Road, Chengdu; 610054, China
3.University of Chinese Academy of Sciences, Beijing; 100049, China;
4.Key Laboratory of Optical Engineering, Chinese Academy of Sciences, No.1 Guangdian Road, Chengdu; 610209, China;
推荐引用方式
GB/T 7714
Guo, Hongyang,Xu, Yangjie,Li, Qing,et al. Improved machine learning approach for wavefront sensing[J]. Sensors (Switzerland),2019,19(16).
APA Guo, Hongyang.,Xu, Yangjie.,Li, Qing.,Du, Shengping.,He, Dong.,...&Huang, Yongmei.(2019).Improved machine learning approach for wavefront sensing.Sensors (Switzerland),19(16).
MLA Guo, Hongyang,et al."Improved machine learning approach for wavefront sensing".Sensors (Switzerland) 19.16(2019).

入库方式: OAI收割

来源:光电技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。