A review of Convolutional-Neural-Network-based action recognition
文献类型:期刊论文
作者 | Yao, Guangle1,2,3; Lei, Tao2; Zhong, Jiandan1,2,3 |
刊名 | Pattern Recognition Letters
![]() |
出版日期 | 2019-02-01 |
卷号 | 118页码:14-22 |
关键词 | Action recognition Deep learning Convolutional Neural Network Action representation |
ISSN号 | 0167-8655 |
DOI | 10.1016/j.patrec.2018.05.018 |
文献子类 | 期刊论文 |
英文摘要 | Video action recognition is widely applied in video indexing, intelligent surveillance, multimedia understanding, and other fields. Recently, it was greatly improved by incorporating the learning of deep information using Convolutional Neural Network (CNN). This motivated us to review the notable CNN-based action recognition works. Because CNN is primarily designed to extract 2D spatial features from still image and videos are naturally viewed as 3D spatiotemporal signals, the core issue of extending the CNN from image to video is temporal information exploitation. We divide the solutions for exploiting temporal information exploration into three strategies: 1) 3D CNN; 2) taking the motion-related information as the CNN input; and 3) fusion. In this paper, we present a comprehensive review of the CNN-based action recognition methods according to these strategies. We also discuss the action recognition performance on recent large-scale benchmarks and the limitations and future research directions of CNN-based action recognition. This paper offers an objective and clear review of CNN-based action recognition and provides a guide for future research. © 2018 Elsevier B.V. |
WOS研究方向 | Computer Science, Artificial Intelligence |
语种 | 英语 |
WOS记录号 | WOS:000457976400003 |
出版者 | Elsevier B.V. |
源URL | [http://ir.ioe.ac.cn/handle/181551/9787] ![]() |
专题 | 光电技术研究所_光电探测技术研究室(三室) |
作者单位 | 1.University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu; 610054, China; 2.Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Shuangliu, Chengdu; 610209, China; 3.University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing; 100039, China |
推荐引用方式 GB/T 7714 | Yao, Guangle,Lei, Tao,Zhong, Jiandan. A review of Convolutional-Neural-Network-based action recognition[J]. Pattern Recognition Letters,2019,118:14-22. |
APA | Yao, Guangle,Lei, Tao,&Zhong, Jiandan.(2019).A review of Convolutional-Neural-Network-based action recognition.Pattern Recognition Letters,118,14-22. |
MLA | Yao, Guangle,et al."A review of Convolutional-Neural-Network-based action recognition".Pattern Recognition Letters 118(2019):14-22. |
入库方式: OAI收割
来源:光电技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。