中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method

文献类型:期刊论文

作者Zhang, Tao1,3; Li, Xinyang; Li, Jianfeng1; Xu, Zhi3
刊名Applied Sciences-Basel
出版日期2020-05-27
卷号10期号:3页码:10113094-1-26
关键词Fpn Low Rank Sparse Total Variation Anisotropy Characteristic
ISSN号2076-3417
DOI10.3390/app10113694
文献子类期刊论文
英文摘要

Fixed pattern noise (FPN) has always been an important factor affecting the imaging quality of CMOS image sensor (CIS). However, the current scene-based FPN removal methods mostly focus on the image itself, and seldom consider the structure information of the FPN, resulting in various undesirable noise removal effects. This paper presents a scene-based FPN correction method: the low rank sparse variational method (LRSUTV). It combines not only the continuity of the image itself, but also the structural and statistical characteristics of the stripes. At the same time, the low frequency information of the image is combined to achieve adaptive adjustment of some parameters, which simplifies the process of parameter adjustment, to a certain extent. With the help of adaptive parameter adjustment strategy, LRSUTV shows good performance under different intensity of stripe noise, and has high robustness.

出版地BASEL
WOS关键词Remote-sensing Images ; Wavelet
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
语种英语
WOS记录号WOS:000543385900031
出版者MDPI
源URL[http://ir.ioe.ac.cn/handle/181551/10039]  
专题光电技术研究所_自适应光学技术研究室(八室)
作者单位1.Chinese Acad Sci, Inst Opt & Elect, Key Lab Adapt Opt, Chengdu 610209, Peoples R China
2.Chinese Acad Sci, Yunnan Observ, Astron Technol Lab, Kunming 650216, Yunnan, Peoples R China
3.Univ Elect Sci & Technol, Sch Optoelect Informat, Chengdu 611731, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Tao,Li, Xinyang,Li, Jianfeng,et al. CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method[J]. Applied Sciences-Basel,2020,10(3):10113094-1-26.
APA Zhang, Tao,Li, Xinyang,Li, Jianfeng,&Xu, Zhi.(2020).CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method.Applied Sciences-Basel,10(3),10113094-1-26.
MLA Zhang, Tao,et al."CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method".Applied Sciences-Basel 10.3(2020):10113094-1-26.

入库方式: OAI收割

来源:光电技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。