中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Supervised dictionary learning supported classifier with feature fusion scheme to noninvasively detect TRISO-particle defects

文献类型:期刊论文

作者Guo, MS; Yang, X; Zhang, F; Zhong, YJ; Lin, J
刊名JOURNAL OF NUCLEAR MATERIALS
出版日期2019
卷号523页码:43-50
关键词COATED FUEL-PARTICLES COATING THICKNESS RECOGNITION
ISSN号0022-3115
DOI10.1016/j.jnucmat.2019.05.040
文献子类期刊论文
英文摘要This paper presents a novel method to support analyzing TRISO-particle failure rate by exploiting X-ray phase contrast imaging (PCI) modality to nondestructively visualize inter-defects and supervised dictionary learning to automatically distinguish cracked particles. Histogram of oriented gradient (HOG) operator was combined with local binary pattern histogram Fourier (LBP-HF) descriptor by canonical correlation analysis (CCA) method in order to extract crack features more significantly. Label consistent K-singular value decomposition (LC K-SVD) dictionary learning followed to encode features with more discriminability and learn a dictionary capable of excluding noise and intra-class variability to enforce recognition, with comparatively high recognition accuracy. (C) 2019 Elsevier B.V. All rights reserved.
语种英语
源URL[http://ir.sinap.ac.cn/handle/331007/32226]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China;
3.Chinese Acad Sci, Ctr Excellence TMSR Energy Syst, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China;
推荐引用方式
GB/T 7714
Guo, MS,Yang, X,Zhang, F,et al. Supervised dictionary learning supported classifier with feature fusion scheme to noninvasively detect TRISO-particle defects[J]. JOURNAL OF NUCLEAR MATERIALS,2019,523:43-50.
APA Guo, MS,Yang, X,Zhang, F,Zhong, YJ,&Lin, J.(2019).Supervised dictionary learning supported classifier with feature fusion scheme to noninvasively detect TRISO-particle defects.JOURNAL OF NUCLEAR MATERIALS,523,43-50.
MLA Guo, MS,et al."Supervised dictionary learning supported classifier with feature fusion scheme to noninvasively detect TRISO-particle defects".JOURNAL OF NUCLEAR MATERIALS 523(2019):43-50.

入库方式: OAI收割

来源:上海应用物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。