中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
基于DeepPose和Faster RCNN的多目标人体骨骼节点检测算法

文献类型:期刊论文

作者余保玲1; 虞松坤1; 孙耀然1; 杨振2; 傅旭波1
刊名中国科学院大学学报
出版日期2020
卷号37期号:6页码:828-834
关键词Faster RCNN DeepPose human body joint nodes detection Faster RCNN DeepPose 人体关节节点检测
ISSN号2095-6134
英文摘要近年来,随着计算机视觉技术的不断发展,深度学习技术在人体关节节点检测中得到了很好的应用。但是由于人体关节结构复杂,关节之间存在相互依赖的关系和互相遮挡的问题,因此人体骨骼节点检测依然是一个极具挑战的任务。传统的模型难以预测多个目标的骨骼节点,为了解决这个问题,提出一种基于Faster RCNN和DeepPose相结合的方法,首先通过Faster RCNN检测出包含人体的感兴趣区域,并将该区域作为改进的DeepPose算法的输入,使其能够处理多目标关节节点检测的问题。实验表明,该算法在MPII数据集的手腕、膝盖两种关键节点检测上均取得最好结果,比之前的最好结果各提升1.2%和0.3%,在全部的关键节点检测上PCKh为87.6%。
语种中文
CSCD记录号CSCD:6849368
源URL[http://ir.ia.ac.cn/handle/173211/42254]  
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位1.浙江大学
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
余保玲,虞松坤,孙耀然,等. 基于DeepPose和Faster RCNN的多目标人体骨骼节点检测算法[J]. 中国科学院大学学报,2020,37(6):828-834.
APA 余保玲,虞松坤,孙耀然,杨振,&傅旭波.(2020).基于DeepPose和Faster RCNN的多目标人体骨骼节点检测算法.中国科学院大学学报,37(6),828-834.
MLA 余保玲,et al."基于DeepPose和Faster RCNN的多目标人体骨骼节点检测算法".中国科学院大学学报 37.6(2020):828-834.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。