Adopting the Word-Pair-Dependency-Triplets with Individual Comparison for Natural Language Inference
文献类型:会议论文
作者 | Qianlong Du1,4![]() ![]() |
出版日期 | 2018-08-20 |
会议日期 | August 20-26, 2018 |
会议地点 | Santa Fe, New Mexico, USA |
英文摘要 | This paper proposes to perform natural language inference with Word-Pair-DependencyTriplets. Most previous DNN-based approaches either ignore syntactic dependency among words, or directly use tree-LSTM to generate sentence representation with irrelevant information. To overcome the problems mentioned above, we adopt Word-Pair-DependencyTriplets to improve alignment and inference judgment. To be specific, instead of comparing each triplet from one passage with the merged information of another passage, we first propose to perform comparison directly between the triplets of the given passage-pair to make the judgment more interpretable. Experimental results show that the performance of our approach is better than most of the approaches that use tree structures, and is comparable to other stateof-the-art approaches. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/42483] ![]() |
专题 | 模式识别国家重点实验室_自然语言处理 |
通讯作者 | Chengqing Zong |
作者单位 | 1.University of Chinese Academy of Sciences 2.Institute of Information Science, Academia Sinica 3.CAS Center for Excellence in Brain Science and Intelligence Technology 4.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Qianlong Du,Chengqing Zong,Keh-Yih Su. Adopting the Word-Pair-Dependency-Triplets with Individual Comparison for Natural Language Inference[C]. 见:. Santa Fe, New Mexico, USA. August 20-26, 2018. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。