CI-GNN: Building a Category-Instance Graph for Zero-Shot Video Classification
文献类型:期刊论文
作者 | Gao, Junyu1,2,3![]() ![]() |
刊名 | IEEE TRANSACTIONS ON MULTIMEDIA
![]() |
出版日期 | 2020-12-01 |
卷号 | 22期号:12页码:3088-3100 |
关键词 | Semantics Task analysis Visualization Training Message passing Pattern recognition Neural networks Zero-shot video classification graph neural network zero-shot learning |
ISSN号 | 1520-9210 |
DOI | 10.1109/TMM.2020.2969787 |
通讯作者 | Xu, Changsheng(csxu@nlpr.ia.ac.cn) |
英文摘要 | With the ever-growing video categories, Zero-Shot Learning (ZSL) in video classification has drawn considerable attention in recent years. To transfer the learned knowledge from seen categories to unseen categories, most existing methods resort to an implicit model that learns a projection between visual features and semantic category-representations. However, such methods ignore the explicit relationships among video instances and categories, which impede the direct information propagation in a Category-Instance graph (CI-graph) consisting of both instances and categories. In fact, exploring the structure of the CI-graph can capture the invariances of the ZSL task with good generality for unseen instances. Inspired by these observations, we propose an end-to-end framework to directly and collectively model the relationships between category-instance, category-category, and instance-instance in the CI-graph. Specifically, to construct node features of this graph, we adopt object semantics as a bridge to generate unified representations for both videos and categories. Motivated by the favorable performance of Graph Neural Networks (GNNs), we design a Category-Instance GNN (CI-GNN) to adaptively model the structure of the CI-graph and propagate information among categories and videos. With the task-driven message passing process, the learned model is able to transfer label information from categories towards unseen videos. Extensive experiments on four video datasets demonstrate the favorable performance of the proposed framework. |
WOS关键词 | LEARNING FRAMEWORK ; NEURAL-NETWORK |
资助项目 | National Natural Science Foundation of China[61720106006] ; National Natural Science Foundation of China[61721004] ; National Natural Science Foundation of China[61832002] ; National Natural Science Foundation of China[61532009] ; National Natural Science Foundation of China[U1705262] ; National Natural Science Foundation of China[U1836220] ; National Natural Science Foundation of China[61702511] ; Key Research Program of Frontier Sciences, CAS[QYZDJSSWJSC039] ; Research Program of National Laboratory of Pattern Recognition[Z-2018007] |
WOS研究方向 | Computer Science ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000591817700006 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Key Research Program of Frontier Sciences, CAS ; Research Program of National Laboratory of Pattern Recognition |
源URL | [http://ir.ia.ac.cn/handle/173211/42515] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
通讯作者 | Xu, Changsheng |
作者单位 | 1.PengCheng Lab, Shenzhen 518066, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Junyu,Xu, Changsheng. CI-GNN: Building a Category-Instance Graph for Zero-Shot Video Classification[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2020,22(12):3088-3100. |
APA | Gao, Junyu,&Xu, Changsheng.(2020).CI-GNN: Building a Category-Instance Graph for Zero-Shot Video Classification.IEEE TRANSACTIONS ON MULTIMEDIA,22(12),3088-3100. |
MLA | Gao, Junyu,et al."CI-GNN: Building a Category-Instance Graph for Zero-Shot Video Classification".IEEE TRANSACTIONS ON MULTIMEDIA 22.12(2020):3088-3100. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。