中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A process transfer model-based optimal compensation control strategy for batch process using just-in-time learning and trust region method

文献类型:期刊论文

作者Chu, Fei1,2,5; Cheng, Xiang5; Peng, Chuang2; Jia, Runda4; Chen, Tao3; Wei, Qinglai5
刊名JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
出版日期2021
卷号358期号:1页码:606-632
ISSN号0016-0032
DOI10.1016/j.jfranklin.2020.10.039
通讯作者Chu, Fei(chufeizhufei@sina.com)
英文摘要The advantages of maximally transferring similar process data for modeling make the process transfer model attract increasing attention in quality prediction and optimal control. Unfortunately, due to the difference between similar processes and the uncertainty of data-driven model, there are usually a more serious mismatch between the process transfer model and the actual process, which may result in the deterioration of process transfer model-based control strategies. In this research, a process transfer model based optimal compensation control strategy using just-in-time learning and trust region method is proposed to cope with this problem for batch processes. First, a novel JITL-JYKPLS (Just-in-time learning Joint-Y kernel partial least squares) model combining the JYKPLS (Joint-Y kernel partial least squares) process transfer model and just-in-time learning is proposed and employed to obtain the satisfactory approximation in a local region with the assistance of sufficient similar process data. Then, this paper integrates JITL-JYKPLS model with the trust region method to further compensate for the NCO (necessary condition of optimality) mismatch in the batch-to-batch optimization problem, and the problem of estimating experimental gradients is also avoided. Meanwhile, a more elaborate model update scheme is designed to supplement the lack of new data and gradually eliminate the adverse effects of partial differences between similar process production processes. Finally, the feasibility of the proposed optimal compensation control strategy is demonstrated through a simulated cobalt oxalate synthesis process. (C) 2020 Published by Elsevier Ltd on behalf of The Franklin Institute.
WOS关键词ONLINE QUALITY PREDICTION ; SOFT SENSOR ; PRODUCT QUALITY ; OPTIMIZATION ; REGRESSION ; DIAGNOSIS ; TRACKING
资助项目National Natural Science Foundation of China[61973304] ; National Natural Science Foundation of China[61503384] ; National Natural Science Foundation of China[61873049] ; Selection and Training Project of High-level Talents in the Sixteenth Six Talent Peaks of Jiangsu Province[DZXX-045] ; Open Subject of State Key Laboratory of Process Automation in Mining Metallurgy[BGRIMMKZSKL-2019-10] ; Open Subject of State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences[20190105] ; Science and Technology Project of Jiangsu Province[BK20191339] ; Fundamental Research Funds for the Central Universities[2019XKQYMS64] ; Xuzhou Science and Technology Project[KC19055]
WOS研究方向Automation & Control Systems ; Engineering ; Mathematics
语种英语
WOS记录号WOS:000604437800030
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Natural Science Foundation of China ; Selection and Training Project of High-level Talents in the Sixteenth Six Talent Peaks of Jiangsu Province ; Open Subject of State Key Laboratory of Process Automation in Mining Metallurgy ; Open Subject of State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences ; Science and Technology Project of Jiangsu Province ; Fundamental Research Funds for the Central Universities ; Xuzhou Science and Technology Project
源URL[http://ir.ia.ac.cn/handle/173211/42541]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
通讯作者Chu, Fei
作者单位1.Beijing Gen Res Inst Min & Met, Beijing Key Lab Proc Automat Min & Met, State Key Lab Proc Automat Min & Met, Beijing 100160, Peoples R China
2.China Univ Min & Technol, Sch Informat & Control Engn, Minist Educ, Underground Space Intelligent Control Engn Res Ct, Xuzhou 221116, Jiangsu, Peoples R China
3.Univ Surrey, Dept Chem & Proc Engn, Guildford, Surrey, England
4.Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
5.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Chu, Fei,Cheng, Xiang,Peng, Chuang,et al. A process transfer model-based optimal compensation control strategy for batch process using just-in-time learning and trust region method[J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,2021,358(1):606-632.
APA Chu, Fei,Cheng, Xiang,Peng, Chuang,Jia, Runda,Chen, Tao,&Wei, Qinglai.(2021).A process transfer model-based optimal compensation control strategy for batch process using just-in-time learning and trust region method.JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,358(1),606-632.
MLA Chu, Fei,et al."A process transfer model-based optimal compensation control strategy for batch process using just-in-time learning and trust region method".JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS 358.1(2021):606-632.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。