Meta-MSNet: Meta-Learning Based Multi-Source Data Fusion for Traffic Flow Prediction
文献类型:期刊论文
作者 | Fang, Shen1,2![]() ![]() ![]() |
刊名 | IEEE SIGNAL PROCESSING LETTERS
![]() |
出版日期 | 2021 |
卷号 | 28页码:6-10 |
关键词 | Data fusion deep learning graph convolution meta-learning traffic flow prediction traffic network |
ISSN号 | 1070-9908 |
DOI | 10.1109/LSP.2020.3037527 |
通讯作者 | Xiang, Shiming(smxiang@nlpr.ia.ac.cn) |
英文摘要 | Traffic flow prediction is a challenging task while most existing works are faced with two main problems in extracting complicated intrinsic and extrinsic features. In terms of intrinsic features, current methods don't fully exploit different functions of short-term neighboring and long-term periodic temporal patterns. As for extrinsic features, recent works mainly employ hand-crafted fusion strategies to integrate external factors but remain generalization issues. To solve these problems, we propose a meta-learning based multi-source spatio-temporal network (Meta-MSNet). The Meta-MSNet is designed with an encoder-decoder structure. The encoder captures neighboring temporal dependencies while the decoder extracts periodic features. Furthermore, two meta-learning based fusion modules are designed to integrate multi-source external data both on temporal and spatial dimensions. Experiments on three real-world traffic datasets have verified the superiority of the proposed model. |
资助项目 | Major Project for New Generation of AI[2018AAA0100400] ; NationalNatural Science Foundation ofChina[91646207] ; NationalNatural Science Foundation ofChina[62076242] ; NationalNatural Science Foundation ofChina[61773377] ; NationalNatural Science Foundation ofChina[61976208] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000608679700002 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Major Project for New Generation of AI ; NationalNatural Science Foundation ofChina |
源URL | [http://ir.ia.ac.cn/handle/173211/42590] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 中国科学院自动化研究所 |
通讯作者 | Xiang, Shiming |
作者单位 | 1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 101408, Peoples R China 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 3.Chongqing Univ Posts & Telecommun, Coll Mobile Telecommun, Chongqing 400065, Peoples R China |
推荐引用方式 GB/T 7714 | Fang, Shen,Pan, Xianbing,Xiang, Shiming,et al. Meta-MSNet: Meta-Learning Based Multi-Source Data Fusion for Traffic Flow Prediction[J]. IEEE SIGNAL PROCESSING LETTERS,2021,28:6-10. |
APA | Fang, Shen,Pan, Xianbing,Xiang, Shiming,&Pan, Chunhong.(2021).Meta-MSNet: Meta-Learning Based Multi-Source Data Fusion for Traffic Flow Prediction.IEEE SIGNAL PROCESSING LETTERS,28,6-10. |
MLA | Fang, Shen,et al."Meta-MSNet: Meta-Learning Based Multi-Source Data Fusion for Traffic Flow Prediction".IEEE SIGNAL PROCESSING LETTERS 28(2021):6-10. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。