中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimal Elevator Group Control via Deep Asynchronous Actor-Critic Learning

文献类型:期刊论文

作者Wei, Qinglai3,5,6; Wang, Lingxiao3,5,6; Liu, Yu2; Polycarpou, Marios M.1,4
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2020-12-01
卷号31期号:12页码:5245-5256
关键词Elevators Optimal control Backpropagation Machine learning Neural networks Learning (artificial intelligence) Actor –critic adaptive dynamic programming deep learning (DL) elevator group control (EGC) optimal control reinforcement learning (RL)
ISSN号2162-237X
DOI10.1109/TNNLS.2020.2965208
英文摘要

In this article, a new deep reinforcement learning (RL) method, called asynchronous advantage actor-critic (A3C) method, is developed to solve the optimal control problem of elevator group control systems (EGCSs). The main contribution of this article is that the optimal control law of EGCSs is designed via a new deep RL method, such that the elevator system sends passengers to the desired destination floors as soon as possible. Deep convolutional and recurrent neural networks, which can update themselves during applications, are designed to dispatch elevators. Then, the structure of the A3C method is developed, and the training phase for the learning optimal law is discussed. Finally, simulation results illustrate that the developed method effectively reduces the average waiting time in a complex building environment. Comparisons with traditional algorithms further verify the effectiveness of the developed method.

WOS关键词GROUP CONTROL-SYSTEM
资助项目National Natural Science Foundation of China[61722312] ; National Natural Science Foundation of China[61673054] ; National Natural Science Foundation of China[61533017] ; National Natural Science Foundation of China[U1501251] ; European Union[739551]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000595533300017
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; European Union
源URL[http://ir.ia.ac.cn/handle/173211/42752]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
通讯作者Wei, Qinglai
作者单位1.Univ Cyprus, Dept Elect & Comp Engn, CY-1678 Nicosia, Cyprus
2.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
3.Qingdao Acad Intelligent Ind, Qingdao 266109, Peoples R China
4.Univ Cyprus, KIOS Res & Innovat Ctr Excellence, CY-1678 Nicosia, Cyprus
5.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
6.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Wang, Lingxiao,Liu, Yu,et al. Optimal Elevator Group Control via Deep Asynchronous Actor-Critic Learning[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2020,31(12):5245-5256.
APA Wei, Qinglai,Wang, Lingxiao,Liu, Yu,&Polycarpou, Marios M..(2020).Optimal Elevator Group Control via Deep Asynchronous Actor-Critic Learning.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,31(12),5245-5256.
MLA Wei, Qinglai,et al."Optimal Elevator Group Control via Deep Asynchronous Actor-Critic Learning".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 31.12(2020):5245-5256.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。