中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Virtual-Real Interaction Approach to Object Instance Segmentation in Traffic Scenes

文献类型:期刊论文

作者Zhang, Hui3,4; Luo, Guiyang5; Tian, Yonglin1,4; Wang, Kunfeng4,6; He, Haibo2; Wang, Fei-Yue4
刊名IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
出版日期2021-02-01
卷号22期号:2页码:863-875
关键词Image segmentation Annotations Computational modeling Automation Object detection Visualization Instance segmentation virtual-real interaction synthetic images distribution discrepancy autonomous vehicles
ISSN号1524-9050
DOI10.1109/TITS.2019.2961145
通讯作者Wang, Kunfeng(wangkf@mail.buct.edu.cn)
英文摘要Object instance segmentation in traffic scenes is an important research topic. For training instance segmentation models, synthetic data can potentially complement real data, alleviating manual effort on annotating real images. However, the data distribution discrepancy between synthetic data and real data hampers the wide applications of synthetic data. In light of that, we propose a virtual-real interaction method for object instance segmentation. This method works over synthetic images with accurate annotations and real images without any labels. The virtual-real interaction guides the model to learn useful information from synthetic data while keeping consistent with real data. We first analyze the data distribution discrepancy from a probabilistic perspective, and divide it into image-level and instance-level discrepancies. Then, we design two components to align these discrepancies, i.e., global-level alignment and local-level alignment. Furthermore, a consistency alignment component is proposed to encourage the consistency between the global-level and the local-level alignment components. We evaluate the proposed approach on the real Cityscapes dataset by adapting from virtual SYNTHIA, Virtual KITTI, and VIPER datasets. The experimental results demonstrate that it achieves significantly better performance than state-of-the-art methods.
资助项目National Key Research and Development Program of China[2018YFC1704400] ; National Natural Science Foundation of China[U1811463]
WOS研究方向Engineering ; Transportation
语种英语
WOS记录号WOS:000615045000014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/43213]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Wang, Kunfeng
作者单位1.Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
2.Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
5.Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
6.Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Hui,Luo, Guiyang,Tian, Yonglin,et al. A Virtual-Real Interaction Approach to Object Instance Segmentation in Traffic Scenes[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2021,22(2):863-875.
APA Zhang, Hui,Luo, Guiyang,Tian, Yonglin,Wang, Kunfeng,He, Haibo,&Wang, Fei-Yue.(2021).A Virtual-Real Interaction Approach to Object Instance Segmentation in Traffic Scenes.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,22(2),863-875.
MLA Zhang, Hui,et al."A Virtual-Real Interaction Approach to Object Instance Segmentation in Traffic Scenes".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 22.2(2021):863-875.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。