中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong

文献类型:期刊论文

作者Zhou, Jiandong2; Lee, Sharen3; Wang, Xiansong4; Li, Yi5; Wu, William Ka Kei4; Liu, Tong6; Cao, Zhidong7; Zeng, Daniel Dajun7; Leung, Keith Sai Kit8; Wai, Abraham Ka Chung8
刊名NPJ DIGITAL MEDICINE
出版日期2021-04-08
卷号4期号:1页码:9
ISSN号2398-6352
DOI10.1038/s41746-021-00433-4
通讯作者Zhang, Qingpeng(qingpeng.zhang@cityu.edu.hk) ; Tse, Gary(garytse@tmu.edu.cn)
英文摘要Recent studies have reported numerous predictors for adverse outcomes in COVID-19 disease. However, there have been few simple clinical risk scores available for prompt risk stratification. The objective is to develop a simple risk score for predicting severe COVID-19 disease using territory-wide data based on simple clinical and laboratory variables. Consecutive patients admitted to Hong Kong's public hospitals between 1 January and 22 August 2020 and diagnosed with COVID-19, as confirmed by RT-PCR, were included. The primary outcome was composite intensive care unit admission, need for intubation or death with follow-up until 8 September 2020. An external independent cohort from Wuhan was used for model validation. COVID-19 testing was performed in 237,493 patients and 4442 patients (median age 44.8 years old, 95% confidence interval (CI): [28.9, 60.8]); 50% males) were tested positive. Of these, 209 patients (4.8%) met the primary outcome. A risk score including the following components was derived from Cox regression: gender, age, diabetes mellitus, hypertension, atrial fibrillation, heart failure, ischemic heart disease, peripheral vascular disease, stroke, dementia, liver diseases, gastrointestinal bleeding, cancer, increases in neutrophil count, potassium, urea, creatinine, aspartate transaminase, alanine transaminase, bilirubin, D-dimer, high sensitive troponin-I, lactate dehydrogenase, activated partial thromboplastin time, prothrombin time, and C-reactive protein, as well as decreases in lymphocyte count, platelet, hematocrit, albumin, sodium, low-density lipoprotein, high-density lipoprotein, cholesterol, glucose, and base excess. The model based on test results taken on the day of admission demonstrated an excellent predictive value. Incorporation of test results on successive time points did not further improve risk prediction. The derived score system was evaluated with out-of-sample five-cross-validation (AUC: 0.86, 95% CI: 0.82-0.91) and external validation (N = 202, AUC: 0.89, 95% CI: 0.85-0.93). A simple clinical score accurately predicted severe COVID-19 disease, even without including symptoms, blood pressure or oxygen status on presentation, or chest radiograph results.
资助项目National Natural Science Foundation of China (NSFC)[71972164] ; National Natural Science Foundation of China (NSFC)[72042018] ; Health and Medical Research Fund of the Food and Health Bureau of Hong Kong[16171991] ; Innovation and Technology Fund of Innovation and Technology Commission of Hong Kong[MHP/081/19] ; National Key Research and Development Program of China, Ministry of Science and Technology of China[2019YFE0198600] ; Collaborative Research Fund (CRF) of Research Grants Council of Hong Kong[C7154-20G]
WOS研究方向Health Care Sciences & Services ; Medical Informatics
语种英语
WOS记录号WOS:000638117000001
出版者NATURE RESEARCH
资助机构National Natural Science Foundation of China (NSFC) ; Health and Medical Research Fund of the Food and Health Bureau of Hong Kong ; Innovation and Technology Fund of Innovation and Technology Commission of Hong Kong ; National Key Research and Development Program of China, Ministry of Science and Technology of China ; Collaborative Research Fund (CRF) of Research Grants Council of Hong Kong
源URL[http://ir.ia.ac.cn/handle/173211/44272]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
通讯作者Zhang, Qingpeng; Tse, Gary
作者单位1.Univ Hong Kong, Dept Pharmacol & Pharm, Pokfulam, Hong Kong, Peoples R China
2.City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
3.Cardiovasc Analyt Grp, Lab Cardiovasc Physiol, Hong Kong, Peoples R China
4.Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China
5.Wuhan Univ Sci & Technol, Wuhan Asia Heart Hosp, Dept Cardiothorac Surg, Wuhan, Hubei, Peoples R China
6.Tianjin Med Univ, Tianjin Inst Cardiol, Tianjin Key Lab Ion Mol Funct Cardiovasc Dis, Hosp 2, Tianjin, Peoples R China
7.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
8.Univ Hong Kong, LKS Fac Med, Emergency Med Unit, Pokfulam, Hong Kong, Peoples R China
9.UCL Sch Pharm, Med Optimisat Res & Educ CMORE, London, England
10.Univ Hong Kong, Dept Med, Pokfulam, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Jiandong,Lee, Sharen,Wang, Xiansong,et al. Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong[J]. NPJ DIGITAL MEDICINE,2021,4(1):9.
APA Zhou, Jiandong.,Lee, Sharen.,Wang, Xiansong.,Li, Yi.,Wu, William Ka Kei.,...&Tse, Gary.(2021).Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong.NPJ DIGITAL MEDICINE,4(1),9.
MLA Zhou, Jiandong,et al."Development of a multivariable prediction model for severe COVID-19 disease: a population-based study from Hong Kong".NPJ DIGITAL MEDICINE 4.1(2021):9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。