Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization
文献类型:会议论文
作者 | Cao, Jie1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2018 |
会议日期 | 2018 年12月3日 – 2018年12月8日 |
会议地点 | 加拿大蒙特利尔 |
英文摘要 | Face frontalization refers to the process of synthesizing the frontal view of a face from a given profile. Due to self-occlusion and appearance distortion in the wild, it is extremely challenging to recover faithful results and preserve texture details in a high-resolution. This paper proposes a High Fidelity Pose Invariant Model (HF-PIM) to produce photographic and identity-preserving results. HF-PIM frontalizes the profiles through a novel texture warping procedure and leverages a dense correspondence field to bind the 2D and 3D surface spaces. We decompose the prerequisite of warping into dense correspondence field estimation and facial texture map recovering, which are both well addressed by deep networks. Different from those reconstruction methods relying on 3D data, we also propose Adversarial Residual Dictionary Learning (ARDL) to supervise facial texture map recovering with only monocular images. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only boosts the performance of pose-invariant face recognition but also dramatically improves high-resolution frontalization appearances. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44301] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | He, Ran |
作者单位 | 1.中国科学院大学 2.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Cao, Jie,Hu, Yibo,Zhang, Hongwen,et al. Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization[C]. 见:. 加拿大蒙特利尔. 2018 年12月3日 – 2018年12月8日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。