中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Informative Sample Mining Network for Multi-Domain Image-to-Image Translation

文献类型:会议论文

作者Cao, Jie1,2; Huang, Huaibo1,2; Li, Yi1,2; He, Ran1,2; Sun, Zhenan1,2
出版日期2020
会议日期2020年8月24日 - 2020年8月27日
会议地点英国格拉斯哥
英文摘要

The performance of multi-domain image-to-image translation has been significantly improved by recent progress in deep generative models. Existing approaches can use a unified model to achieve translations between all the visual domains. However, their outcomes are far from satisfying when there are large domain variations. In this paper, we reveal that improving the sample selection strategy is an effective solution. To select informative samples, we dynamically estimate sample importance during the training of Generative Adversarial Networks, presenting Informative Sample Mining Network. We theoretically analyze the relationship between the sample importance and the prediction of the global optimal discriminator. Then a practical importance estimation function for general conditions is derived. Furthermore, we propose a novel multi-stage sample training scheme to reduce sample hardness while preserving sample informativeness. Extensive experiments on a wide range of specific image-to-image translation tasks are conducted, and the results demonstrate our superiority over current state-of-the-art methods.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/44302]  
专题自动化研究所_智能感知与计算研究中心
通讯作者He, Ran
作者单位1.中国科学院大学
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Cao, Jie,Huang, Huaibo,Li, Yi,et al. Informative Sample Mining Network for Multi-Domain Image-to-Image Translation[C]. 见:. 英国格拉斯哥. 2020年8月24日 - 2020年8月27日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。