Informative Sample Mining Network for Multi-Domain Image-to-Image Translation
文献类型:会议论文
作者 | Cao, Jie1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2020 |
会议日期 | 2020年8月24日 - 2020年8月27日 |
会议地点 | 英国格拉斯哥 |
英文摘要 | The performance of multi-domain image-to-image translation has been significantly improved by recent progress in deep generative models. Existing approaches can use a unified model to achieve translations between all the visual domains. However, their outcomes are far from satisfying when there are large domain variations. In this paper, we reveal that improving the sample selection strategy is an effective solution. To select informative samples, we dynamically estimate sample importance during the training of Generative Adversarial Networks, presenting Informative Sample Mining Network. We theoretically analyze the relationship between the sample importance and the prediction of the global optimal discriminator. Then a practical importance estimation function for general conditions is derived. Furthermore, we propose a novel multi-stage sample training scheme to reduce sample hardness while preserving sample informativeness. Extensive experiments on a wide range of specific image-to-image translation tasks are conducted, and the results demonstrate our superiority over current state-of-the-art methods. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44302] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | He, Ran |
作者单位 | 1.中国科学院大学 2.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Cao, Jie,Huang, Huaibo,Li, Yi,et al. Informative Sample Mining Network for Multi-Domain Image-to-Image Translation[C]. 见:. 英国格拉斯哥. 2020年8月24日 - 2020年8月27日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。