中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Analyzing Topics of JUUL Discussions on Social Media Using a Semantics-assisted NMF model

文献类型:会议论文

作者Hejing Liu1,2,3; Qiudan Li1,2; Riheng Yao1,2,3; Daniel Dajun Zeng1,2,3
出版日期2019
会议日期2019-7-1
会议地点Shenzhen, China
英文摘要

JUUL has become a widely used brand of e-cigarettes which takes more than 70% of the market. Social media provides a popular platform for users to discuss the preference and perceptions of JUUL. The discussions are valuable for real-time monitoring of JUUL use. Current research on topic analysis of JUUL discussions mainly relies on human work, which takes much time and effort. This paper adopts a Semantics-assisted NMF topic analysis model to automatically discover topics from JUUL-related short posts on Reddit. By successfully merging the semantic relationships into traditional NMF, this model outperforms in discovering topics with keywords that are important but have a lower word frequency among the posts. Experimental results show the potential of this model in JUUL surveillance and control practice. 

源URL[http://ir.ia.ac.cn/handle/173211/44314]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
通讯作者Qiudan Li
作者单位1.The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences Beijing 100190, China
2.Shenzhen Artificial Intelligence and Data Science Institute (Longhua)
3.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Hejing Liu,Qiudan Li,Riheng Yao,et al. Analyzing Topics of JUUL Discussions on Social Media Using a Semantics-assisted NMF model[C]. 见:. Shenzhen, China. 2019-7-1.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。