Learning Meta Face Recognition in Unseen Domains
文献类型:会议论文
作者 | Guo JZ(郭建珠)1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2020-06 |
会议日期 | June 13-19, 2020 |
会议地点 | Seattle, WA, USA |
DOI | 10.1109/CVPR42600.2020.00620 |
页码 | 6162-6171 |
英文摘要 | Face recognition systems are usually faced with unseen domains in real-world applications and show unsatisfactory performance due to their poor generalization. For example, a well-trained model on webface data cannot deal with the ID vs. Spot task in surveillance scenario. In this paper, we aim to learn a generalized model that can directly handle new unseen domains without any model updating. To this end, we propose a novel face recognition method via meta-learning named Meta Face Recognition (MFR). MFR synthesizes the source/target domain shift with a meta-optimization objective, which requires the model to learn effective representations not only on synthesized source domains but also on synthesized target domains. Specifically, we build domain-shift batches through a domain-level sampling strategy and get back-propagated gradients/meta-gradients on synthesized source/target domains by optimizing multi-domain distributions. The gradients and meta-gradients are further combined to update the model to improve generalization. Besides, we propose two benchmarks for generalized face recognition evaluation. Experiments on our benchmarks validate the generalization of our method compared to several baselines and other state-of-the-arts. The proposed benchmarks and code will be available at https://github.com/cleardusk/MFR. |
会议录出版者 | IEEE |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44370] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Lei Z(雷震) |
作者单位 | 1.中国科学院自动化所 2.中国科学院大学 3.西湖大学 4.明略科技 |
推荐引用方式 GB/T 7714 | Guo JZ,Zhu XY,Zhao CX,et al. Learning Meta Face Recognition in Unseen Domains[C]. 见:. Seattle, WA, USA. June 13-19, 2020. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。