中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Towards Fast, Accurate and Stable 3D Dense Face Alignment

文献类型:会议论文

作者Guo JZ(郭建珠)1,4; Zhu XY(朱翔昱)1,4; Yang Y(杨阳)1,4; Yang F(杨帆)3; Lei Z(雷震)1,4; Li ZQ(李子青)2
出版日期2020-08
会议日期August 23-28, 2020
会议地点Glasgow, UK
DOI10.1007/978-3-030-58529-7\_10
页码152-168
英文摘要

Existing methods of 3D dthus limiting the scope of their practical applications. In this paper, we propose a novel regression framework which makes a balance among speed, accuracy and stability. Firstly, on the basis of a lightweight backbone, we propose a meta-joint optimization strategy to dynamically regress a small set of 3DMM parameters, which greatly enhances speed and accuracy simultaneously. To further improve the stability on videos, we present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving. On the premise of high accuracy and stability, our model runs at 50 fps on a single CPU core and outperforms other state-of-the-art heavy models simultaneously. Experiments on several challenging datasets validate the efficiency of our method. The code and models will be available at https://github.com/cleardusk/ 3DDFA_V2.

会议录出版者Springer
源URL[http://ir.ia.ac.cn/handle/173211/44372]  
专题自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心
中国科学院自动化研究所
通讯作者Lei Z(雷震)
作者单位1.中国科学院自动化所
2.西湖大学
3.北京航空航天大学
4.中国科学院大学
推荐引用方式
GB/T 7714
Guo JZ,Zhu XY,Yang Y,et al. Towards Fast, Accurate and Stable 3D Dense Face Alignment[C]. 见:. Glasgow, UK. August 23-28, 2020.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。