Towards Fast, Accurate and Stable 3D Dense Face Alignment
文献类型:会议论文
| 作者 | Guo JZ(郭建珠)1,4 ; Zhu XY(朱翔昱)1,4 ; Yang Y(杨阳)1,4 ; Yang F(杨帆)3; Lei Z(雷震)1,4 ; Li ZQ(李子青)2
|
| 出版日期 | 2020-08 |
| 会议日期 | August 23-28, 2020 |
| 会议地点 | Glasgow, UK |
| DOI | 10.1007/978-3-030-58529-7\_10 |
| 页码 | 152-168 |
| 英文摘要 | Existing methods of 3D dthus limiting the scope of their practical applications. In this paper, we propose a novel regression framework which makes a balance among speed, accuracy and stability. Firstly, on the basis of a lightweight backbone, we propose a meta-joint optimization strategy to dynamically regress a small set of 3DMM parameters, which greatly enhances speed and accuracy simultaneously. To further improve the stability on videos, we present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving. On the premise of high accuracy and stability, our model runs at 50 fps on a single CPU core and outperforms other state-of-the-art heavy models simultaneously. Experiments on several challenging datasets validate the efficiency of our method. The code and models will be available at https://github.com/cleardusk/ 3DDFA_V2. |
| 会议录出版者 | Springer |
| 源URL | [http://ir.ia.ac.cn/handle/173211/44372] ![]() |
| 专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 中国科学院自动化研究所 |
| 通讯作者 | Lei Z(雷震) |
| 作者单位 | 1.中国科学院自动化所 2.西湖大学 3.北京航空航天大学 4.中国科学院大学 |
| 推荐引用方式 GB/T 7714 | Guo JZ,Zhu XY,Yang Y,et al. Towards Fast, Accurate and Stable 3D Dense Face Alignment[C]. 见:. Glasgow, UK. August 23-28, 2020. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

