Page Object Detection from PDF Document Images by Deep Structured Prediction and Supervised Clustering
文献类型:会议论文
作者 | Li, Xiao-Hui1,3![]() ![]() ![]() |
出版日期 | 2018 |
会议日期 | 2018-8 |
会议地点 | 中国北京国家会议中心 |
关键词 | page object detection deep learning structured prediction supervised clustering |
英文摘要 | Page object detection in document images remains a challenge because the page objects are diverse in scale and aspect ratio, and an object may contain largely apart components. In this paper, we propose a hybrid method combining deep structured prediction and supervised clustering to detect formulas, tables and figures in PDF document images within a unified framework. The primitive region proposals extracted from each column region are classified and clustered with conditional random field (CRF) based graphical models which can integrate both local and contextual information. Both the unary and pairwise potentials of CRFs are formulated as convolutional neural networks (CNNs) to better exploit spatial contextual information. The CRF for clustering predicts the linked/cut label of between-region links. After CRF inference, the line regions of same class within a cluster are grouped into a page object. The state-of-the-art performance obtained on the public available ICDAR2017 POD competition dataset demonstrates the effectiveness and superiority of the proposed method. |
会议录出版者 | IEEE |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44422] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_模式分析与学习团队 |
通讯作者 | Liu, Cheng-Lin |
作者单位 | 1.University of Chinese Academy of Sciences, Beijing, P.R. China 2.CAS Center for Excellence of Brain Science and Intelligence Technology, Beijing, P.R. China 3.National Laboratory of Pattern Recognition, Institute of Automation of Chinese Academy of Sciences 95 Zhongguancun East Road, Beijing 100190, P.R. China |
推荐引用方式 GB/T 7714 | Li, Xiao-Hui,Yin, Fei,Liu, Cheng-Lin. Page Object Detection from PDF Document Images by Deep Structured Prediction and Supervised Clustering[C]. 见:. 中国北京国家会议中心. 2018-8. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。