Locate then Segment: A Strong Pipeline for Referring Image Segmentation
文献类型:会议论文
作者 | Jing Y(荆雅)2,3![]() ![]() ![]() ![]() ![]() |
出版日期 | 2021-06 |
会议日期 | 2021-6 |
会议地点 | virtual |
英文摘要 | Referring image segmentation aims to segment the objects referred by a natural language expression. Previous methods usually focus on designing an implicit and recurrent feature interaction mechanism to fuse the visuallinguistic features to directly generate the final segmentation mask without explicitly modeling the localization information of the referent instances. To tackle these problems, we view this task from another perspective by decoupling it into a "Locate-Then-Segment" (LTS) scheme. Given a language expression, people generally first perform attention to the corresponding target image regions, then generate a |
源URL | [http://ir.ia.ac.cn/handle/173211/44447] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
作者单位 | 1.ByteDance AI Lab 2.Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA) 3.School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS) |
推荐引用方式 GB/T 7714 | Jing Y,Kong T,Wang W,et al. Locate then Segment: A Strong Pipeline for Referring Image Segmentation[C]. 见:. virtual. 2021-6. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。