Hand Pose Understanding With Large-Scale Photo-Realistic Rendering Dataset
文献类型:期刊论文
作者 | Deng, Xiaoming4; Zhang, Yinda3; Shi, Jian2![]() |
刊名 | IEEE TRANSACTIONS ON IMAGE PROCESSING
![]() |
出版日期 | 2021 |
卷号 | 30页码:4275-4290 |
关键词 | Three-dimensional displays Annotations Pose estimation Task analysis Color Image color analysis Rendering (computer graphics) Hand pose estimation photo-realistic synthetic dataset physical-based rendering multi-task CNN |
ISSN号 | 1057-7149 |
DOI | 10.1109/TIP.2021.3070439 |
通讯作者 | Deng, Xiaoming(xiaoming@iscas.ac.cn) |
英文摘要 | Hand pose understanding is essential to applications such as human computer interaction and augmented reality. Recently, deep learning based methods achieve great progress in this problem. However, the lack of high-quality and large-scale dataset prevents the further improvement of hand pose related tasks such as 2D/3D hand pose from color and depth from color. In this paper, we develop a large-scale and high-quality synthetic dataset, PBRHand. The dataset contains millions of photo-realistic rendered hand images and various ground truths including pose, semantic segmentation, and depth. Based on the dataset, we firstly investigate the effect of rendering methods and used databases on the performance of three hand pose related tasks: 2D/3D hand pose from color, depth from color and 3D hand pose from depth. This study provides insights that photo-realistic rendering dataset is worthy of synthesizing and shows that our new dataset can improve the performance of the state-of-the-art on these tasks. This synthetic data also enables us to explore multi-task learning, while it is expensive to have all the ground truth available on real data. Evaluations show that our approach can achieve state-of-the-art or competitive performance on several public datasets. |
资助项目 | National Key Research and Development Program of China[2019YFC1521100] ; Distinguished Young Researcher Program, Institute of Software, Chinese Academy of Sciences |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000640713600009 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Program of China ; Distinguished Young Researcher Program, Institute of Software, Chinese Academy of Sciences |
源URL | [http://ir.ia.ac.cn/handle/173211/44497] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Deng, Xiaoming |
作者单位 | 1.Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 3.Google, Mountain View, CA 94043 USA 4.Chinese Acad Sci, Inst Software, Beijing Key Lab Human Comp Interact, Beijing 100190, Peoples R China 5.Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 100190, Peoples R China 6.Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China 7.Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Peoples R China 8.Alibaba, Hangzhou 310012, Peoples R China |
推荐引用方式 GB/T 7714 | Deng, Xiaoming,Zhang, Yinda,Shi, Jian,et al. Hand Pose Understanding With Large-Scale Photo-Realistic Rendering Dataset[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:4275-4290. |
APA | Deng, Xiaoming.,Zhang, Yinda.,Shi, Jian.,Zhu, Yuying.,Cheng, Dachuan.,...&Wang, Hongan.(2021).Hand Pose Understanding With Large-Scale Photo-Realistic Rendering Dataset.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,4275-4290. |
MLA | Deng, Xiaoming,et al."Hand Pose Understanding With Large-Scale Photo-Realistic Rendering Dataset".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):4275-4290. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。