中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Strong-Background Restrained Cross Entropy Loss for Scene Text Detection

文献类型:会议论文

作者Huang Randong1,2; Xu Bo1
出版日期2019-07
会议日期14-19 July 2019
会议地点Budapest, Hungary.
英文摘要

In this paper, we investigate the issue of class imbalance in scene text detection. Class Balanced Cross Entropy (CBCE) loss is often adopted for addressing this imbalance problem. We find that CBCE excessively restrains the backward gradients of background. Negative samples own extremely small weights which are offered by CBCE during training of text detectors. These tiny weight values lead to insufficient learning of background. As a result, the CBCE-based text detection methods only can achieve sub-optimal performance. 

We propose a novel loss function, Strong-Background Restrained Cross Entropy (SBRCE), to deal with the disadvantage in CBCE. Specifically, SBRCE effectively down-weights the loss assigned to the strong background which means well-classified negative samples. Our SBRCE can make training focused on all positive samples and weak background(i.e., hard-classified negative samples). Moreover, it can prevent the enormous amount of strong background from overwhelming text detectors during training. Experimental results show that the proposed SBRCE can improve the performance of the efficient and accurate scene text detector (EAST) by F-score of 3.3% on ICDAR2015 dataset and 1.12% on MSRA-TD500 dataset, without sacrificing the training and testing speed of EAST. 

源URL[http://ir.ia.ac.cn/handle/173211/44561]  
专题数字内容技术与服务研究中心_听觉模型与认知计算
通讯作者Xu Bo
作者单位1.Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Huang Randong,Xu Bo. Strong-Background Restrained Cross Entropy Loss for Scene Text Detection[C]. 见:. Budapest, Hungary.. 14-19 July 2019.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。