A Novel Adaptive Parameter Search Elastic Net Method for Fluorescent Molecular Tomography
文献类型:期刊论文
作者 | Wang, Hanfan1,5; Bian, Chang1,4![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON MEDICAL IMAGING
![]() |
出版日期 | 2021-05-01 |
卷号 | 40期号:5页码:1484-1498 |
关键词 | Image reconstruction Fluorescence Probes Mathematical model Photonics Molecular imaging Biological tissues Fluorescence molecular tomography adaptive parameter search elastic net |
ISSN号 | 0278-0062 |
DOI | 10.1109/TMI.2021.3057704 |
英文摘要 | Fluorescence molecular tomography (FMT) is a new type of medical imaging technology that can quantitatively reconstruct the three-dimensional distribution of fluorescent probes in vivo. Traditional Lp norm regularization techniques used in FMT reconstruction often face problems such as over-sparseness, over-smoothness, spatial discontinuity, and poor robustness. To address these problems, this paper proposes an adaptive parameter search elastic net (APSEN) method that is based on elastic net regularization, using weight parameters to combine the L1 and L2 norms. For the selection of elastic net weight parameters, this approach introduces the L0 norm of valid reconstruction results and the L2 norm of the residual vector, which are used to adjust the weight parameters adaptively. To verify the proposed method, a series of numerical simulation experiments were performed using digital mice with tumors as experimental subjects, and in vivo experiments of liver tumors were also conducted. The results showed that, compared with the state-of-the-art methods with different light source sizes or distances, Gaussian noise of 5%-25%, and the brute-force parameter search method, the APSEN method has better location accuracy, spatial resolution, fluorescence yield recovery ability, morphological characteristics, and robustness. Furthermore, the in vivo experiments demonstrated the applicability of APSEN for FMT. |
WOS关键词 | RECONSTRUCTION METHOD ; REGULARIZATION ; SELECTION |
资助项目 | Ministry of Science and Technology of China[2017YFA0205] ; National Natural Science Foundation of China[81871514] ; National Natural Science Foundation of China[81227901] ; National Natural Science Foundation of China[81470083] ; National Natural Science Foundation of China[91859119] ; National Natural Science Foundation of China[61671449] ; National Natural Science Foundation of China[81527805] ; National Natural Science Foundation of China[61901472] ; Beijing Natural Science Foundation[7212207] ; National Public Welfare Basic Scientific Research Program of Chinese Academy of Medical Sciences[2018PT32003] ; National Public Welfare Basic Scientific Research Program of Chinese Academy of Medical Sciences[2017PT32004] ; National Key R&D Program of China[2018YFC0910602] ; National Key R&D Program of China[2017YFA0205200] ; National Key R&D Program of China[2017YFA0700401] ; National Key R&D Program of China[2016YFA0100902] ; National Key R&D Program of China[2016YFC0103702] ; National Natural Science Foundation of Shaanxi Provience[2019JM-459] |
WOS研究方向 | Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging |
语种 | 英语 |
WOS记录号 | WOS:000645866500016 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Ministry of Science and Technology of China ; National Natural Science Foundation of China ; Beijing Natural Science Foundation ; National Public Welfare Basic Scientific Research Program of Chinese Academy of Medical Sciences ; National Key R&D Program of China ; National Natural Science Foundation of Shaanxi Provience |
源URL | [http://ir.ia.ac.cn/handle/173211/44666] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | An, Yu; Du, Yang; Tian, Jie |
作者单位 | 1.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China 2.Xidian Univ, Sch Life Sci & Technol, Minist Educ, Engn Res Ctr Mol & Neuro Imaging, Xian 710071, Peoples R China 3.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med Sci & Engn, Beijing 100191, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100080, Peoples R China 5.Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Hanfan,Bian, Chang,Kong, Lingxin,et al. A Novel Adaptive Parameter Search Elastic Net Method for Fluorescent Molecular Tomography[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2021,40(5):1484-1498. |
APA | Wang, Hanfan,Bian, Chang,Kong, Lingxin,An, Yu,Du, Yang,&Tian, Jie.(2021).A Novel Adaptive Parameter Search Elastic Net Method for Fluorescent Molecular Tomography.IEEE TRANSACTIONS ON MEDICAL IMAGING,40(5),1484-1498. |
MLA | Wang, Hanfan,et al."A Novel Adaptive Parameter Search Elastic Net Method for Fluorescent Molecular Tomography".IEEE TRANSACTIONS ON MEDICAL IMAGING 40.5(2021):1484-1498. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。