中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Reference-guided Face Component Editing

文献类型:会议论文

;
作者Deng, Qiyao1,2; Cao, Jie1,2; Liu, Yunfan1,2; Chai, Zhenhua3; Li, Qi1,2; Sun, Zhenan1,2
出版日期2020 ; 2020
会议日期2021年1月7日 – 2021年1月15日 ; 2021年1月7日 – 2021年1月15日
会议地点日本横滨 ; 日本横滨
英文摘要

Face portrait editing has achieved great progress in recent years. However, previous methods either 1) operate on pre-defined face attributes, lacking the flexibility of controlling shapes of high-level semantic facial components (e.g., eyes, nose, mouth), or 2) take manually edited mask or sketch as an intermediate representation for observable changes, but such additional input usually requires extra efforts to obtain. To break the limitations (e.g. shape, mask or sketch) of the existing methods, we propose a novel framework termed r-FACE (Reference-guided FAce Component Editing) for diverse and controllable face component editing with geometric changes. Specifically, r-FACE takes an image inpainting model as the backbone, utilizing reference images as conditions for controlling the shape of face components. In order to encourage the framework to concentrate on the target face components, an example-guided attention module is designed to fuse attention features and the target face component features extracted from the reference image. Through extensive experimental validation and comparisons, we verify the effectiveness of the proposed framework.

;

Face portrait editing has achieved great progress in recent years. However, previous methods either 1) operate on pre-defined face attributes, lacking the flexibility of controlling shapes of high-level semantic facial components (e.g., eyes, nose, mouth), or 2) take manually edited mask or sketch as an intermediate representation for observable changes, but such additional input usually requires extra efforts to obtain. To break the limitations (e.g. shape, mask or sketch) of the existing methods, we propose a novel framework termed r-FACE (Reference-guided FAce Component Editing) for diverse and controllable face component editing with geometric changes. Specifically, r-FACE takes an image inpainting model as the backbone, utilizing reference images as conditions for controlling the shape of face components. In order to encourage the framework to concentrate on the target face components, an example-guided attention module is designed to fuse attention features and the target face component features extracted from the reference image. Through extensive experimental validation and comparisons, we verify the effectiveness of the proposed framework.

语种英语 ; 英语
源URL[http://ir.ia.ac.cn/handle/173211/44727]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Li, Qi
作者单位1.中国科学院自动化研究所
2.中国科学院大学
3.美团AI平台
推荐引用方式
GB/T 7714
Deng, Qiyao,Cao, Jie,Liu, Yunfan,et al. Reference-guided Face Component Editing, Reference-guided Face Component Editing[C]. 见:. 日本横滨, 日本横滨. 2021年1月7日 – 2021年1月15日, 2021年1月7日 – 2021年1月15日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。