中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
P2 Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation

文献类型:会议论文

作者Hou, Luanxuan1,2; Cao, Jie1,2; Zhao, Yuan3; Shen, Haifeng3; Tang, Jian3; He, Ran1,2
出版日期2021
会议日期2021年1月10日 - 2021年1月15日
会议地点意大利米兰
英文摘要

The target of human pose estimation is to determine the body parts and joint locations of persons in the image. Angular changes, motion blur and occlusion in the natural scenes make this task challenging, while some joints are more difficult to be detected than others. In this paper, we propose an augmented Parallel-Pyramid Net (P2Net) with feature refinement by dilated bottleneck and attention module. During data preprocessing, we proposed a differentiable auto data augmentation (DA2) method. We formulate the problem of searching data augmentaion policy in a differentiable form, so that the optimal policy setting can be easily updated by back propagation during training. DA2 improves the training efficiency. A parallel-pyramid structure is followed to compensate the information loss introduced by the network. We innovate two fusion structures, i.e. Parallel Fusion and Progressive Fusion, to process pyramid features from backbone network. Both fusion structures leverage the advantages of spatial information affluence at high resolution and semantic comprehension at low resolution effectively. We propose a refinement stage for the pyramid features to further boost the accuracy of our network. By introducing dilated bottleneck and attention module, we increase the receptive field for the features with limited complexity and tune the importance to different feature channels. To further refine the feature maps after completion of feature extraction stage, an Attention Module (AM) is defined to extract weighted features from different scale feature maps generated by the parallel-pyramid structure. Compared with the traditional up-sampling refining, AM can better capture the relationship between channels. Experiments corroborate the effectiveness of our proposed method. Notably, our method achieves the best performance on the challenging MSCOCO and MPII datasets.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/44730]  
专题自动化研究所_智能感知与计算研究中心
通讯作者He, Ran
作者单位1.中国科学院大学
2.中国科学院自动化研究所
3.滴滴AI实验室
推荐引用方式
GB/T 7714
Hou, Luanxuan,Cao, Jie,Zhao, Yuan,et al. P2 Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation[C]. 见:. 意大利米兰. 2021年1月10日 - 2021年1月15日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。