中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
FaceInpainter: High Fidelity Face Adaptation to Heterogeneous Domains

文献类型:会议论文

作者Li, Jia1,2; Li, Zhaoyang1,2; Cao, Jie1,2; Song, Xinghuang1,2; He, Ran1,2
出版日期2020
会议日期2021年6月19日 – 2021年6月25日
会议地点美国田纳西州纳什维尔
英文摘要

In this work, we propose a novel two-stage framework named FaceInpainter to implement controllable Identity-Guided Face Inpainting (IGFI) under heterogeneous domains. Concretely, by explicitly disentangling foreground and background of the target face, the first stage focuses on adaptive face fitting to the fixed background via a Styled Face Inpainting Network (SFI-Net), with 3D priors and texture code of the target, as well as identity factor of the source face. It is challenging to deal with the inconsistency between the new identity of the source and the original background of the target, concerning the face shape and appearance on the fused boundary. The second stage consists of a Joint Refinement Network (JR-Net) to refine the swapped face. It leverages AdaIN considering identity and multi-scale texture codes, for feature transformation of the decoded face from SFI-Net with facial occlusions. We adopt the contextual loss to implicitly preserve the attributes, encouraging face deformation and fewer texture distortions. Experimental results demonstrate that our approach handles high-quality identity adaptation to heterogeneous domains, exhibiting the competitive performance compared with state-of-the-art methods concerning both attribute and identity fidelity.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/44732]  
专题自动化研究所_智能感知与计算研究中心
通讯作者He, Ran
作者单位1.中国科学院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Li, Jia,Li, Zhaoyang,Cao, Jie,et al. FaceInpainter: High Fidelity Face Adaptation to Heterogeneous Domains[C]. 见:. 美国田纳西州纳什维尔. 2021年6月19日 – 2021年6月25日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。