FaceInpainter: High Fidelity Face Adaptation to Heterogeneous Domains
文献类型:会议论文
作者 | Li, Jia1,2; Li, Zhaoyang1,2; Cao, Jie1,2![]() ![]() |
出版日期 | 2020 |
会议日期 | 2021年6月19日 – 2021年6月25日 |
会议地点 | 美国田纳西州纳什维尔 |
英文摘要 | In this work, we propose a novel two-stage framework named FaceInpainter to implement controllable Identity-Guided Face Inpainting (IGFI) under heterogeneous domains. Concretely, by explicitly disentangling foreground and background of the target face, the first stage focuses on adaptive face fitting to the fixed background via a Styled Face Inpainting Network (SFI-Net), with 3D priors and texture code of the target, as well as identity factor of the source face. It is challenging to deal with the inconsistency between the new identity of the source and the original background of the target, concerning the face shape and appearance on the fused boundary. The second stage consists of a Joint Refinement Network (JR-Net) to refine the swapped face. It leverages AdaIN considering identity and multi-scale texture codes, for feature transformation of the decoded face from SFI-Net with facial occlusions. We adopt the contextual loss to implicitly preserve the attributes, encouraging face deformation and fewer texture distortions. Experimental results demonstrate that our approach handles high-quality identity adaptation to heterogeneous domains, exhibiting the competitive performance compared with state-of-the-art methods concerning both attribute and identity fidelity. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44732] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | He, Ran |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Li, Jia,Li, Zhaoyang,Cao, Jie,et al. FaceInpainter: High Fidelity Face Adaptation to Heterogeneous Domains[C]. 见:. 美国田纳西州纳什维尔. 2021年6月19日 – 2021年6月25日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。