Geometry-Aware Face Completion and Editing
文献类型:会议论文
作者 | Song, Linsen1,2![]() ![]() ![]() ![]() ![]() |
出版日期 | 2019 |
会议日期 | 2019年1月27日 – 2019年2月1日 |
会议地点 | 美国夏威夷檀香山 |
英文摘要 | Face completion is a challenging generation task because it requires generating visually pleasing new pixels that are semantically consistent with the unmasked face region. This paper proposes a geometry-aware Face Completion and Editing NETwork (FCENet) by systematically studying facial geometry from the unmasked region. Firstly, a facial geometry estimator is learned to estimate facial landmark heatmaps and parsing maps from the unmasked face image. Then, an encoder-decoder structure generator serves to complete a face image and disentangle its mask areas conditioned on both the masked face image and the estimated facial geometry images. Besides, since low-rank property exists in manually labeled masks, a low-rank regularization term is imposed on the disentangled masks, enforcing our completion network to manage occlusion area with various shape and size. Furthermore, our network can generate diverse results from the same masked input by modifying estimated facial geometry, which provides a flexible mean to edit the completed face appearance. Extensive experimental results qualitatively and quantitatively demonstrate that our network is able to generate visually pleasing face completion results and edit face attributes as well. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44733] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | He, Ran |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Song, Linsen,Cao, Jie,Song, Lingxiao,et al. Geometry-Aware Face Completion and Editing[C]. 见:. 美国夏威夷檀香山. 2019年1月27日 – 2019年2月1日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。