Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity
文献类型:会议论文
作者 | Penghui Wei1,2![]() ![]() ![]() |
出版日期 | 2019-11 |
会议日期 | 2019-11 |
会议地点 | Hong Kong, China |
英文摘要 | Automatically verifying rumorous information has become an important and challenging task in natural language processing and social media analytics. Previous studies reveal that people’s stances towards rumorous messages can provide indicative clues for identifying the veracity of rumors, and thus determining the stances of public reactions is a crucial preceding step for rumor veracity prediction. In this paper, we propose a hierarchical multi-task learning framework for jointly predicting rumor stance and veracity on Twitter, which consists of two components. The bottom component of our framework classifies the stances of tweets in a conversation discussing a rumor via modeling the structural property based on a novel graph convolutional network. The top component predicts the rumor veracity by exploiting the temporal dynamics of stance evolution. Experimental results on two benchmark datasets show that our method outperforms previous methods in both rumor stance classification and veracity prediction. |
会议录出版者 | ACL |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/44758] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
通讯作者 | Wenji Mao |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Penghui Wei,Nan Xu,Wenji Mao. Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity[C]. 见:. Hong Kong, China. 2019-11. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。