中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity

文献类型:会议论文

作者Penghui Wei1,2; Nan Xu1,2; Wenji Mao1,2
出版日期2019-11
会议日期2019-11
会议地点Hong Kong, China
英文摘要

Automatically verifying rumorous information has become an important and challenging task in natural language processing and social media analytics. Previous studies reveal that people’s stances towards rumorous messages can provide indicative clues for identifying the veracity of rumors, and thus determining the stances of public reactions is a crucial preceding step for rumor veracity prediction. In this paper, we propose a hierarchical multi-task learning framework for jointly predicting rumor stance and veracity on Twitter, which consists of two components. The bottom component of our framework classifies the stances of tweets in a conversation discussing a rumor via modeling the structural property based on a novel graph convolutional network. The top component predicts the rumor veracity by exploiting the temporal dynamics of stance evolution. Experimental results on two benchmark datasets show that our method outperforms previous methods in both rumor stance classification and veracity prediction.

会议录出版者ACL
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/44758]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
通讯作者Wenji Mao
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Penghui Wei,Nan Xu,Wenji Mao. Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity[C]. 见:. Hong Kong, China. 2019-11.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。