中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Collaborative Adversarial Networks for Joint Synthesis and Segmentation of X-ray Breast Mass Images

文献类型:会议论文

作者Shen, Tianyu2,4; Gou, Chao1; Wang, Jiangong2,4; Wang, Fei-Yue2,3
出版日期2021-01-29
会议日期2020-11-06
会议地点Shanghai, China
关键词generative adversarial network medical image synthesis mass segmentation X-ray breast mass
英文摘要

In this paper, we propose Collaborative Adversarial Networks (CAN) to enable simultaneous forward synthesis and backward segmentation of X-ray breast mass image. The proposed CAN consists of a generator (G), an inverter (I) and a discriminator (D). G aims to reconstruct mass images from corresponding annotated masks, while I is trained for mapping images back to accurate segmentation masks. All the obtained mask-image pairs are fed to D trained in an adversarial learning scheme. Through the collaborative adversarial training using a joint loss function, G synthesizes realistic mass images consistent with provided masks and I effectively segments the tumor regions from the images. Qualitative and quantitative evaluations on publicly available INbreast database demonstrate the effectiveness of our model. Furthermore, different from conventional GANs-based methods that can only perform either image synthesis or segmentation, the proposed model can be generalized to other bidirectional image-to-image translation of multimodal medical data.

源URL[http://ir.ia.ac.cn/handle/173211/44769]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Gou, Chao
作者单位1.Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Qingdao Acad Intelligent Ind, Zhilidao Rd 1, Qingdao 266000, Shandong, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Shen, Tianyu,Gou, Chao,Wang, Jiangong,et al. Collaborative Adversarial Networks for Joint Synthesis and Segmentation of X-ray Breast Mass Images[C]. 见:. Shanghai, China. 2020-11-06.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。